Atomic Energy Science and Technology

文章编号:1000-6931(2001)S0-0062-08

酰胺类萃取剂从模拟高放废液中 分离锕系和镧系元素的研究

时国安¹,罗方祥¹,何建玉¹,肖松涛¹,朱文彬¹,陈文俊²,丁颂东²,黄忠良²

(1. 中国原子能科学研究院 放射化学研究所,北京 102413;
 2. 四川大学 化学系,四川 成都 610064)

摘要:研究了酰胺荚醚 N,N,N,N-四丁基-3-氧-戊二酰胺(TBOPDA)和 N-503(N,N-二乙基庚酰 胺)以及 TBOPDA 与 N-503 的组合萃取剂在硝酸介质中对 U()、Pu()、Am()、Eu()和其 他一些金属离子的萃取行为,稀释剂为 40%正辛醇-煤油。用 0.075 mol/L TBOPDA + 0.5 mol/L N-503/40%辛醇-煤油为萃取剂,从模拟高放废液中分离 U()、Pu()、Am()和 Eu()的微 型混合澄清槽实验结果表明:在A槽,大于 99.99%的 U()、Pu()、Am()和 Am()被萃入有 机相;在 R1槽,U()被定量反萃,83%的 Pu()和 36%的 Am()被反萃入水相;在 R2槽中残 留的 Pu()、Am()和 Eu()可被定量反萃下来。该流程可有效提取高放废液中的锕系元素, 并可对其进行组分离。

关键词:酰胺荚醚;N-503;模拟高放废液;U();Pu();Am();Eu() 中图分类号:O652.62 文献标识码:A

如何有效地从高放废液(HLLW)中分离次锕系元素和进行锕(An)镧(Ln)系分离,是人们 十分关心的一个课题。自从 Siddall^[1,2]首先采用双官能团类萃取剂从硝酸介质中萃取 An(, ,)以来,双官能团类萃取剂用于高放废液分离的研究取得了迅速的发展。但这类 萃取剂均含磷,不能彻底焚烧。相比之下,酰胺类萃取剂不含磷和硫,可以彻底焚烧,若用于高 放废液处理,将不会产生大量二次废物。

单酰胺对铀、钚及长寿命裂变产物锝有一定的萃取能力,对三价锕系和镧系基本不萃取。 Cuillerdier 等^[3]报道,酰胺荚醚([$R_1R_2NC(O)$] $_2R_3$, $R_3 = -(-CH_2OCH_2 \rightarrow , -)$ 对三价锕系和 镧系元素有较高的萃取能力,且无毒性。酰胺荚醚合成方法简单,产率高^[4]。Y. Sasaki^[5]研 究了 N, N -二甲基-N, N -二己基-3-氧-戊二酰胺对锕系和镧系元素的萃取行为。文献[6~8] 报道了 3 种酰胺荚醚萃取剂(N, N, N, N -四丁基-3-氧-戊二酰胺(TBOPDA)、N, N, N, N -四 异丁基-3-氧-戊二酰胺(TiBOPDA)和 N, N, N, N -四丁基-3,6-二氧-辛二酰胺(TBDOODA)) 对 Am()和锝等的萃取行为。这类萃取剂可在较宽酸度范围内萃取三价锕系和镧系元素。

收稿日期:2000-12-05;修回日期:2001-03-06

作者简介:叶国安(1964 ---),男,安徽南陵人,研究员,在职博士研究生,核化学化工专业

综合比较表明,TBOPDA 具有应用前景。但用微型混合萃取槽进行的该萃取剂对模拟高放废 液的分离实验中观察到,TBOPDA 对 An()、Ln()的分配比太高,反萃困难;另外,在用 0.2 mol/L TBOPDA 直接萃取新配制的模拟高放废液时,出现了较为严重的界面污物。单酰 胺对 An()、Ln()以及对锆的萃取分配比较低,因而,考虑将两种萃取剂组合起来一起使 用,以期降低 An()、Ln()的分配比并改善界面污物。本工作就菜醚与单酰胺(N-503,N, N-二乙基庚酰胺)的萃取行为及其组合萃取剂用于从模拟高放废液中分离回收锕、镧系元素 进行研究。

1 实验

1.1 试剂

酰胺荚凝 TBOPDA 由四川大学合成,经 IR、MS、NMR 和元素分析方法分析,它们的纯度 高于 98 %。N-503 为上海有机研究所合成的分析纯试剂,使用前未作进一步纯化。异羟肟酸 AHA,由本实验室合成,纯度高于 98 %。使用的其他试剂均为分析纯。

1.2 示踪剂

实验中使用的放射性示踪剂有²³³U、²³⁹Pu、²⁴¹Am和^{152~154}Eu。²³³U通过阴离子交换与它的子体及 Th 分离。²³⁹Pu 用阴离子交换法进行纯化。²⁴¹Am、^{152~154}Eu 由中国原子能科学研究院同位素研究所提供,它们的纯度均高于 99%。将 NH4⁹⁹TcO4 溶于硝酸溶液制得⁹⁹Tc 贮备液,未进行进一步纯化。

1.3 实验与分析

1) 分配比测定

分配比 D 的实验测定方法如下:将有机相与相应 HNO₃ 溶液预平衡 3 次,弃去水相;加入 1.0 mL 含示踪量放射性核素的水相,在(25 ±1) 下振荡 5 min,离心分离;两相取相同体积 进行测量,和 用LS6000型液闪谱仪(Beckmann 公司)测量,计数用 NaI(Tl)闪烁计数器 测量。

2) 元素分析

Mo、Cs、Zr、Ru和 Fe 用分光光度法测量。

3) 连续逆流萃取实验

在模拟高放废液的连续逆流萃取实验中,待运行达到平衡后,分别取各级有机相和水相 样,²⁴¹Am和^{152~154}Eu用 能谱法测量,²³⁹Pu和²³³U用 能谱法测量。

2 结果和讨论

2.1 TBOPDA对 Pu()、Am()和 U()的萃取

表 1 列出了不同 HNO₃ 浓度下 TBOPDA 萃取 Pu()、U()、Am()和某些裂变产物的 分配比 D。

对 Pu()、U()、Am()和 Mo,水相酸度增加,分配比随之增加;在 3 mol/L HNO₃下, Zr()和 Pu()有相当大的分配比;萃取剂浓度降低 4 倍,Am()的分配比仍很高;Mo 和 Ru 的分配比不高,在有常量稀土存在时,预计分配比会更低,这有利于对其去污;TcO₄⁻有一 定的分配比,且在 3 mol/L HNO₃下最大,为 2.67。由此可见:TBOPDA 可有效萃取 An、Ln,但 对 Am()的萃取分配比大却造成了有机相中 Am()的反萃困难;对锆的萃取较多,易导致

出现界面污物。

表1 0.2 mol/L TBOPDA/40 %辛醇-煤油对 Pu()、U()和 Am()的萃取分配比 D(t=22) Table 1 The distribution ratio of Pu()、U() and Am()

with 0.2 mol/L TBOPDA/40 % octanol kerosene ($t = 22$)									
$c(\text{HNO}_3)/\text{ mol } \mathbf{L}^{-1}$	Pu()	U()	Am() ¹⁾	Zr() ²⁾	Ru	Tc()	Мо		
0.1	8.77	0.03	0.37	0. 621	2	0.61	0.15		
0.5	37.9	0.22	10.5	1.53		1.61	0.19		
1.0	60.9	0.87	78.4	29.1	0.26	2.54	0.26		
2.0	144	3.29	296	81.2	0.27	3.48	0.78		
3.0	236	6.83	298	152	0.20	2.67	1.24		
4.0	473	9.77		213	0.19	1.58			

注:1) TBOPDA 浓度为 0.02 mol/L

2) TBOPDA 浓度为 0.05 mol/L

2.2 N 503 对 U()、Pu()、TcO4 和 Eu()的萃取

表 2 列出了单酰胺 N-503 对U()、Pu()、Eu()和 Tc()的萃取分配比随酸度的变化。另据文献报道,单酰胺对锆的萃取分配比在较大的酸度范围内小于 $1^{[9]}$ 。

由表 2 可知: N-503 对 U() 和 Pu() 有一定的萃取分配,适宜于铀和钚的提取; 对 An()、Ln()几乎不萃取:在低酸下,对 Tc()的分配比大,随酸度增加,分配比下降。

表 2	0.5 mol/L N503/煤油萃取 U() , Pu () 、Tc ()和 Eu()的分配比 D(t=22)
-----	------------------------	-----------------	----------------	--------	--------------	---

Table 2 The distribution ratio of U(-), Pu(-), Tc(-) and Eu(-)

			D	
$c(\text{HNO}_3)/\text{mol} \mathbf{L}$	Pu()	U()	Eu() ¹⁾	Tc()
0.1	0.14	0.04		2.50
0.5	0.12	0.67	1.80 ×10 ⁻⁴	0.99
1.0	0.78	2.06	1.60 ×10 ⁻⁴	0.74
2.0	7.48	5.56	2.70 ×10 ⁻⁴	0.78
3.0	10.8	7.78	3.83 ×10 ⁻⁴	0.45
4.0	50.3	8.57	5.12 ×10 ⁻⁴	0.55

with 0.5 mol/L N503/ kerosene(t = 22)

注:1) N-503 浓度为 0.35 mol/L

2.3 TBOPDA 与 N 503 组合萃取剂的萃取行为

为了降低 TBOPDA 对 An()、Ln()和锆的萃取分配比,将 N-503 与 TBOPDA 混合使用,并使组合试剂中的 N-503 的浓度高,TBOPDA 的浓度低。

表 3 列出了 0.5 mol/L N-503 + 0.1 mol/L TBOPDA 对 U()、Pu()和 Am()的萃取 分配比。对比表 1 可以看出:两种萃取剂混合后没有协萃效应;降低 TBOPDA 浓度,可明显降 低 Pu()和 Am()的萃取分配比;进一步降低其浓度,Pu()和 Am()的分配比还可进一 步降低,以便将 Pu()和 Am()的分配比调节至既利于萃取也利于反萃;同时,组合萃取剂

对锶基本不萃取,对锝有一定的萃取分配比。

表 3 0.5 mol/L N·503 + 0.1 mol/L TBOPDA/40 % 辛醇 + 煤油对 U()、Np()、Pt()、 Tc()、Am()和 Sr()的萃取分配比 D(t = 22)

Table 3 The distribution ratio D of U(), Np(), Pu(), Tc(), Am() and Sr() with 0.5 mol/L N503 + 0.1 mol/L TBOPDA/40 % estable kerosene(t = 22)

$c(\text{HNO}_3)/\text{ mol } \mathbf{L}^{-1}$	Pu()	U()	Am() ¹⁾	Pu() ¹⁾	Tc()	Sr()		
0.1	2.48	0.03	1.46	1.14				
0.25			1.34	1.97				
0.5	17.2	0.04	6.85	7.62	3.07	0.10		
1.0	31.0	1.46	31.2	22.4	4.46	0.25		
2.0	75.6	4.24			3.87	0.31		
3.0	143	6.57			3.62	0.20		
4.0	200	9.26			2.05	0.08		

注:1) 组合萃取剂中的 TBOPDA 浓度为 0.05 mol/L

为便于分步反萃有机相中的 Pu()和 Am(),以达到组分离的目的,实验观察了络合剂 ED TA 存在时不同酸度下 Pu()和 Am()的萃取分配比(表 4)。由表 4 可知:维持水相酸 度为 0.3~0.5 mol/L、ED TA 浓度为 0.005 mol/L 时,Pu()的分配比很低。在此条件下,可 以反萃 Pu(),因 Am()仍有一定的分配比,它将保留在有机相,从而可将 Pu()和 Am()分离。

表 4 络合剂存在情况下 0.5 mol/L N503 + 0.05 mol/L TBOPDA/40 %辛醇 + 煤油 对 Pu()和 Am()的萃取分配比 D(t = 22) Table 4 The distribution ratio D of Pu() and Am() with 0.5 mol/L N503 + 0.05 mol/L TBOPDA/40 % octanol + kerosene in the presence of complexant (t = 22)

		D
小伯	Pu()	Am()
$0.1 mol/L HNO_3 + 0.005 mol/L EDTA$	0.004	0.33
$0.\ 3\ mol/L\ HNO_3 + 0.\ 005\ mol/L\ EDTA$	0.03	2.33
$0.\ 5\ mol/\ L\ HNO_3 + 0.\ 05\ mol/\ L\ ED\ TA$	0.20	6.05

2.4 界面污物的观察

TBOPDA 与硝酸溶液接触时,如果稀释剂是煤油或氯仿,则很易形成三相,用辛醇+煤油 作稀释剂时,TBOPDA 的三相可以消除。TBOPDA/辛醇+煤油体系萃取单个金属离子时的 界面污物生成情况列于表 5。从表 5 可以看出:在萃取三价稀土时,达到饱和萃取也无三相出 现;萃取四价和六价金属元素时,在金属元素离子浓度较高时才出现三相。

	Table 5Emulsion formation at 0.2 mol/L TBOPDA contacted with metal ions							
金属离子	$c/ \mod \mathbf{L}^{-1}$	界面污物	金属离子	$c/ \text{ mol } L^{-1}$	界面污物	金属离子	c/ mol L - 1	界面污物
Eu()	0.1	无	Th()	0.005	无	U()	0.02	无
	0.6	无		0.01	无	1 56	0.03	し 无
	2.0	无		0.03	无		0.05	少量
				0.05	少量	Noz	0.1	严重
			77	0.1	严重			

表 5 0.2 mol/L TBOPDA 萃取金属离子时界面污物生成情况

 $注: c(HNO_3) = 2.0 \text{ mol/L}$

新配制的模拟高放废液与 0.2 mol/L TBOPDA/40 %辛醇 + 煤油接触时,产生了较为严重的界面污物,而将模拟料液放置 1 年后,则不出现界面污物(表 6)。Smith 等^[10]在研究双酰胺萃取体系时曾采用单酰胺作为体系的相改良剂。鉴于此,实验观察了组合试剂对模拟料液的萃取。其中,TBOPDA 和 N-503 的浓度分别为 0.075 和 0.5 mol/L。这时,界面污物有所减轻,但仍不能消除;同样,将模拟料液放置 1 年,待其中的大部分锆生成了沉淀后,界面污物则不再出现(表 6)。由此可见:用荚醚或荚醚与单酰胺组成的组合萃取剂萃取模拟高放废液时,要消除界面污物,目前的办法就是将料液静置 1 年。

表 6 两种萃取体系萃取模拟料液时界面污物的生成情况(22)

Ta ble	6	Emulsion	formation f	for	simulated	high-leve	el liquid	waste
	ext	racted by	TBOPDA a	nd	TROPDA	+ № 503(22)	

호파하	界面污物生成情况					
卒収剂	新配模拟料液	放置1年后模拟料液				
0.2 mol/L TBOPDA	严重	无				
0.5 mol/L N-503 + 0.075 mol/L TBOPDA	少量	无 无				

2.5 模拟高放废液混合澄清槽萃取

以选定的 0.5 mol/L N-503 + 0.075 mol/L TBOPDA 为萃取剂,以 40 %辛醇 + 煤油为稀 释剂,进行了该萃取体系从放置 1 年的模拟高放废液中分离 U()、Pu()和 Am()的混合 澄清槽萃取实验。萃取流程示于图 1。

实验结果表明:在 A 槽,大于 99.99 %的 U()、Pu()和 Am()被萃入有机相;在 R1 槽,U()被定量反萃,83 %的 Pu()和约 36 %的 Am()同时被反萃入水相;在 R2 槽,余 下的 Pu()和 Am()被定量反萃下来。U()、Pu()、Am()、Eu()在 3 个混合萃取槽 各级中的分布示于图 2。可以看出:该流程用于提取高放废液中的锕系元素的效果相当好,并 可进行组分离。

3 结论

1) TBOPDA/ 辛醇-煤油对 Pu()、Am()和 Zr 等的萃取分配比相当高,不利于 Am() 的反萃以及消除界面污物。

7

2) N-503 对三价锕镧基本不萃取,对 Pu()和 U()有一定的萃取分配比。

3) 0.5 mol/L N-503 + 0.075 mol/L TBOPDA 混合萃取剂对 U()、Pu()、Am()和 Tc()有一定的萃取分配比,该体系中 Pu()和 Am()的反萃相对容易,两者可较好地相 互分离。

4)采用混合萃取剂可明显减轻萃取模拟高放废液时界面污物的生成,但仍不能有效地消除界面污物。若进行混合澄清槽萃取,需将模拟高放废液放置较长时间。

5) 采用 0.5 mol/L N-503 + 0.075 mol/L TBOPDA 混合萃取剂的混合澄清槽萃取实验结 果表明:该萃取体系可以很好地分离高放废液中的锕-镧系元素,并可进行组分离。

参考文献:

- Sidaali TH. Bidentate Organophosphorus Compounds as Extractants . Extraction of Cerium, Promethium and Americium Nitrates[J]. J Inorg Nucl Chem, 1963, 25(7):883 ~ 892.
- [2] Siddall TH. Bidentate Organophosphorus Compounds as Extractants . Extraction Mechanisms for Cerium Nitrates[J]. J Inorg Nucl Chem, 1964, 26(11): 1 991 ~ 2 003.
- [3] Cuillerdier C, Musikas C, Hoel P, et al. Maloamides as New Extractants for Nuclear Waste Solutions [J]. Sep Sci Tech, 1991, 26(9) :1 229 ~ 1 244.
- [4] Stephan H, Goe K, Beger J, et al. Liquid-liquid Extraction of Metal Ions With Amido Podands[J]. Solvent Extr Ion Exch, 1991, 9(3):459~469.
- [5] Sasaki Y, Choppin GR. Extraction of Np (), by N, N-dimethyl-N, N-dihexyl-3-oxapentanediamide [J].
 Radiochim Acta, 1998, 80:85~88.
- [6] 叶国安,何建玉,姜永青,等. 酰胺荚醚对 Am()和 Eu()的萃取行为研究. 萃取机理研究[J]. 核化
 学与放射化学,2000,22(2):65~72.
- [7] 叶国安,何建玉,罗方祥.酰胺荚醚对Am()和Eu()的萃取行为研究. 萃取热力学和萃合物光谱研究[J].核化学与放射化学,2000,22(3):136~143.
- [8] 叶国安,罗方祥,姜永青,等. 酰胺荚醚对 Tc()的萃取行为研究[J]. 原子能科学技术,2000,34(6):528 ~ 533.
- [9] Gasparini GM, Grossi G. Application of N, N-dialkyl Aliphatic Amides in the Separation of Some Actinides
 [J]. Sep Sci Tech, 1980, 15(4):825 ~ 844.
- [10] Smith BF, Wilson KV, Gibson RR, et al. Amides as Phase Modifiers for N, N-tetraalkylmalonamide Extraction of Actinides and Lanthanides From Niyric Acid Solutions[J]. Sep Sci Technol, 1997, 32(1~4):149 ~173.

The Separation of Actinides and Lanthanides From Simulated High-level Liquid Waste Using Amide Compounds as Extractant

YE Guo-an¹, LUO Fang-xiang¹, HE Jiar-yu¹, XíAO Song-tao¹, ZHU Wen-bin¹, CHEN Wen-jun², DING Song-dong², HUANG Zhong-liang²

China Institute of Atomic Energy, P. O. Box 275-26, Beijing 102413, China;
 Chemistry Department of Sichuan University, Chengdu 610064, China)

Abstract :The extraction behaviour of U(), Pu(), Am(), Eu() and some other cations is investigated using amido podands, such as TBOPDA (N, N, N N -tetrabutyl-3-oxy-pentandiamide) or a mixture of TBOPDA and N-503 (N, N -diethylheptamide) as extractants, and 40 % octanol and kerosene as diluent for both cases. On the basis of tuble tests, courtcurrent experiments with miniature mix settler is carried out to separate U(), Pu(), Am() and Eu() from simulated high-level liquid waste solution by the extractant of 0.075 mol/L TBOPDA + 0.5 mol/L N-503/40 % octanol-kerosene. In the coextraction battery, more than 99.9 % of U (), Pu(), Eu() and Am() is extracted into organic phase. 83 % of Pu() and 36 % of Am() are striped into aqueous in first back-extraction battery, and in the second one the remaind Pu(), Am() and Eu() are striped completely. The results show that this flow-sheet is highly effective on recover and group actinides and lanthanides from high-level liquid waste.

Key words :amido podand; N, N -diethylheptamide; simulated high-level liquid waste; U (); Pu();Am();Eu()