加速器驱动的次临界系统 散裂靶泄漏中子谱研究

谭新建,李金英

(华润电力控股有限公司,广东深圳 518000)

摘要:为研究加速器驱动的次临界系统(ADS)散裂靶的散裂中子学特性,采用 Geant4 计算不同能量质 子轰击铅铋靶产生的泄漏中子产额、能谱、轴向积分分布。模拟得到1 GeV 质子对应的靶的优化尺寸及 优化后泄漏中子谱,计算结果可为 ADS 散裂靶件和堆芯设计提供参考。

关键词:ADS;散裂靶;中子泄漏谱

中图分类号:TL32 文献标志码:A 文章编号:1000-6931(2013)09-1590-04 doi:10.7538/yzk,2013.47.09.1590

Neutron Leakage Spectrum Study of Spallation Target of ADS

TAN Xin-jian, LI Jin-ying

(China Resources Power Holdings Co., Ltd., Shenzhen 518000, China)

Abstract: To study the neutron leakage spectrum of spallation target of ADS, the neutron leakage spectrum of lead-bismuth eutectic target with 1 GeV proton was simulated by Geant4 toolkit. The simulated neutron leakage spectrum and target optimization parameters, which will be beneficial to the reactor core design, are obtained.

Key words: ADS; spallation target; neutron leakage spectrum

加速器驱动的次临界系统(ADS)是 20 世 纪 50 年代末提出并发展的,它同时结合了粒子 加速器和反应堆两项技术。一方面,装置内的 强中子场可将装填的长寿命放射性废物嬗变为 短寿命的可裂变核材料,极大提高铀资源的利 用率,另一方面,它不同常规动力堆那样依赖堆 内苛刻的反应性要求。因 ADS 技术的诸多优 势,使其一直成为国际核能领域研究的重 点^[1-2]。ADS 一般包括加速器、散裂中子靶和 次临界堆芯 3 个子系统,本文拟采用 Geant4 计 算不同能量质子轰击铅铋靶产生的泄漏中子产 额、能谱和轴向积分分布,同时计算1 GeV 质 子对应的靶的优化尺寸及优化后泄漏中子谱, 结果可为散裂靶和堆芯设计提供参考。

1 基本原理

在 GeV 能段,质子波长小于原子核内核子 间的平均距离,入射质子和靶内单个核子发生 准自由碰撞。碰撞过程中,质子将部分或全部 能量传递给碰撞粒子,并碰撞出中子、质子、氘 核、氦核、e[±]、π[±]、γ等次级粒子,这些粒子以及 碰撞后的质子有可能逃逸出核外,也可能与其

收稿日期:2012-04-25;修回日期:2013-05-04

作者简介:谭新建(1982一),男,广东深圳人,工程师,硕士,核能工程设计专业

他粒子继续碰撞,释放出另外的粒子,直到能量 接近核内结合能为止,激发态的残余核通过蒸 发中子回到基态,整个散裂过程概括为级联和 蒸发两个步骤。本文模拟高能质子轰击金属靶 材产生的散裂中子,进而作为中子源驱动次临 界包层系统,使次临界包层系统维持链式反应 获取核能和增殖核材料。

2 研究方法

Geant4 是由欧洲核子中心主导开发的大型开源粒子输运软件包,在高能物理领域应用 广泛。本文在 Linux 操作系统 Geant4 平台上 尝试性开展反应堆中子物理计算,数据分析程 序借助 Root 软件编写完成。

2.1 质子束参数选取

Geant4 模拟显示,1 GeV 能量的质子束在 合金靶中的射程约 60 cm,径向发散约 15 cm; 2 GeV能量的质子束在合金靶中的射程约 100 cm,径向发散约 30 cm;在相同参数的靶 中,2 GeV 质子产生的泄漏中子对比 1 GeV 的 并非线性增加。从 ADS 能量倍增最大化角度 考虑,模型中质子束入射能量取 1 GeV,模拟计 算忽略束流发射度的影响。模拟测试还发现单 粒子能产生 30~40 个散裂中子,且每次统计涨 落大。为避免统计涨落使谱线呈连续分布,同 时降低存储空间和节约计算时间,计算时质子 数取 5 000。

2.2 散裂靶参数确定

在液态重金属中,铅及其 3 种合金——铅 铋合金(44.5% Pb + 55.5% Bi)、铅锂合金 (99.32%Pb+0.68%Li)、铅镁合金(97.5% Pb + 2.5%Mg)常作为(次)临界快堆、ADS 的设计 用冷却剂,同时也作为 ADS 设计的液态散裂靶 件。在以上备选靶材中,铅铋合金因低熔点 (124 C)、低腐蚀、易维护而获得重点关注和研 究^[2]。本文散裂靶采用圆柱体设计结构,计算 靶材选用液态铅铋合金(LBE),模拟温度 773 K,压力 0.1 MPa,密度取 10.1 g/cm³。

减小靶径向设计尺寸,可有效增加入射端 泄漏中子。但散裂靶尺寸需科学合理设计,工 程设计时常选用10 cm 半径的圆柱体靶。计算 模型中靶区高度取100 cm,靶半径取10 cm,质 子在中心坐标零点上方30 cm 处沿竖直方向向 下入射,即出射坐标为(0 m,0 m,0.3 m),方向 矢量为(0,0,-1)。模型如图1所示。

图 1 计算模型 Fig. 1 Calculation model

3 计算结果

3.1 泄漏中子谱模拟比对

为验证 Geant4 采用的核数据库的适用性, 开展了与 MCNPX 的对比计算研究。Geant4 模拟计算采用与文献[3]相同的初始条件,得到 的泄漏中子谱示于图 2。Geant4 模拟得到的泄 漏中子谱在谱形上和 MCNPX 的相吻合,且泄 漏中子谱峰均在 1 MeV 左右^[3],验证了 Geant4 的 合理性。

3.2 泄漏产额和泄漏中子谱计算

对于半径 10 cm 的液态铅铋靶和 5 000 个 入射质子,靶侧壁泄漏中子总数为 50 709,单位 泄漏产额(泄漏中子数/入射质子数)为 10.14; 顶部泄漏数为 366,底部泄漏数为 92,单位总泄 漏产额为 10.23。不同能量的泄漏中子数列于 表1。泄漏中子轴向积分分布和能谱分别如图 3、4 所示。

表 1 半径 10 cm 靶侧壁对应不同能段泄漏中子数 Table 1 Neutron leakage count with different energy

for target with radius of 10 cm

能量/MeV	泄漏中子数
10~20	47 276
$5 \sim 10$	45 626
$4 \sim 5$	43 282
$3 \sim 4$	42 367
$2 \sim 3$	40 782
1~2	37 060
$0 \sim 1$	27 983

Fig. 3 Neutron leakage distribution in axis direction for target with radius of 10 cm

3.3 散裂靶模拟优选

模型中暂不考虑束流发射度的影响,圆柱体散裂靶半径增至12.5 cm,其他参数保持不变,计算得到靶侧壁泄漏中子总数增至52121,

单位泄漏产额为 10.42; 顶部泄漏数为 828, 底 部泄漏数为 229, 单位总泄漏产额为 10.64。不 同能量泄漏中子数列于表 2。对应的泄漏中子 轴向积分分布和能谱分别如图 5、6 所示。

表 2 半径 12.5 cm 靶侧壁对应不同能段泄漏中子数

Table 2Neutron leakage count with different energy
for target with radius of 12.5 cm

能量/MeV	泄漏中子数
10~20	49 272
$5 \sim 10$	47 899
$4 \sim 5$	46 151
$3 \sim 4$	45 433
$2 \sim 3$	44 124
$1\!\sim\!2$	41 099
$0 \sim 1$	32 418

图 5 半径 12.5 cm 靶泄漏中子轴向积分分布 Fig.5 Neutron leakage distribution in axis direction for target with radius of 12.5 cm

对比发现,适当增大靶半径后,泄漏中子 轴向积分分布和能谱均无明显变化,但泄漏 中子数增加 2.78%,且能谱有变软趋势,这对 适当增大 0.4 m高度区域表

于靶件设计具有积极意义。同时,适当增大 靶空间尺寸,有利于改善靶区对流换热,避免 出现局部沸腾导致靶区中子产额突变,或能 谱峰值下移。

在上述模拟结果的基础上,继续改变散裂 靶尺寸。高度保持不变,不同半径下 5 000 个 1 GeV的单能入射质子在 LBE 散裂靶侧壁引 起的中子泄漏产额及对应的单位泄漏产额列于 表 3。

表 3	不同半	径散裂靴	则对应的	泄漏产阁	页
	Table 3	Neutron	leakage	yield	
with different spallation radii					

半径/cm	侧壁泄漏产额	单位泄漏产额
10	50 702	10.14
12.5	52 121	10.42
15	53 576	10.72
17.5	53 644	10.73
18	53 406	10.68
19	53 246	10.65
20	53 160	10.63
22.5	53 109	10.62

对比发现,随着计算半径从 10 cm 增大到 17.5 cm,侧壁泄漏产额不断增加;但半径从 17.5 cm 过渡到 20 cm,侧壁泄漏中子减少约 1%,这是由于随靶区尺寸增大,散裂靶对中子 的吸收、散射几率也随之增加所致,同时统计误 差也存在一定影响。

综上所述,入射质子能量为1 GeV 时,在 假定靶区不发生局部沸腾的前提下,半径 17.5 cm是散裂靶的理想设计尺寸,-0.2~ 0.4 m高度区域是最大活性区,此时单位散裂中 子泄漏产额为10.73,具体的参数确定需综合考 虑反应堆工程多学科要求。计算还发现,少部分 质子穿透靶区而未发生散裂反应,这部分发散质 子(能量约100 MeV)在 ADS 中将继续轰击锕系 燃料元件,在堆芯区引发散裂过程。

4 结语

本文是应用 Geant4 开展的反应堆中子物 理尝试性计算工作的一部分,采用 Geant4 计算 了不同能量质子轰击不同尺寸铅铋靶产生的泄 漏中子产额、能谱、轴向积分分布,计算结果可 为 ADS 散裂靶件和堆芯设计提供参考。在本 计算工作的合理性得到验证后,将开展散裂靶 参数优化计算及关于 Geant4 应用于反应堆物 理的其他方面的尝试性研究。

参考文献:

- [1] NIFENECKERA H, DAVIDB S, LOISEAUXA J M, et al. Basics of accelerator driven subcritical reactors[J]. Nuclear Instruments and Methods in Physics Research A, 2001, 463: 428-467.
- [2] Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [M]. Paris: OECD Nuclear Energy Agency, 2008.
- [3] 王育威,杨永伟,崔鹏飞.加速器驱动系统的靶物理计算分析[J].原子能科学技术,2011,45
 (9):1065-1069.
 WANG Yuwei, YANG Yongwei, CUI Pengfei. Analysis of target physics in accelerator-driven

system[J]. Atomic Energy Science and Technology, 2011, 45(9): 1 065-1 069(in Chinese).