# 肺部计数器虚拟校准结果的影响因素

武 祯<sup>1,2</sup>, 邱 睿<sup>1,3,4</sup>, 陈官正<sup>1,3,4</sup>, 李春艳<sup>1,2</sup>, 李君利<sup>1,3,4,\*</sup>

(1.清华大学工程物理系,北京 100084;2.同方威视技术股份有限公司,北京 100084;
 3.清华大学 粒子技术与辐射成像教育部重点实验室,北京 100084;

4. 清华大学 高能辐射成像重点学科实验室,北京 100084)

摘要:内照射活体测量中,肺部计数器通常忽略肺以外其他器官中沉积的放射性核素对探测器计数的贡献,且校准使用的参考体模和被监测人之间会有身体形态的差异。本文利用中国成年男性体模库,采用蒙特卡罗程序模拟计算了<sup>65</sup>Zn和<sup>60</sup>Co核素的器官源探测效率,并计算了总探测效率,研究了这两个因素对虚拟校准的影响。结果表明,对于类似<sup>65</sup>Zn的核素不能忽略肺部以外其他器官源的计数贡献;同一身高下,肺部计数器对<sup>65</sup>Zn和<sup>60</sup>Co核素的总探测效率随体重增加而降低,且对于<sup>65</sup>Zn核素的降低比例会随摄入时间而变化;对于同一体模的总探测效率会随时间而降低。由此证明,核素生物动力学分布和体模形态的差异对肺部计数器总探测效率均有较大影响,且对不同核素影响会有不同。

关键词:虚拟校准;体模库;生物动力学模型;探测效率

中图分类号:TL72 文献标志码:A 文章编号:1000-6931(2017)03-0529-07 doi:10.7538/yzk.2017.51.03.0529

# Influence Factor on Virtual Calibration Result of Lung Counter

WU Zhen<sup>1,2</sup>, QIU Rui<sup>1,3,4</sup>, CHEN Yi-zheng<sup>1,3,4</sup>, LI Chun-yan<sup>1,2</sup>, LI Jun-li<sup>1,3,4,\*</sup>

(1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;

2. Nuctech Company Limited, Beijing 100084, China;

3. Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Tsinghua University, Beijing 100084, China;

4. Key Laboratory of High Energy Radiation Imaging Fundamental Science, Tsinghua University, Beijing 100084, China)

Abstract: In the in vivo measurement for internal contamination, the detector count from the radionuclides deposited in organs other than the lung is neglected for lung counter. Besides, the monitored people have morphological deviation with the reference phantom in calibration. The organ-specific detection efficiency for <sup>65</sup>Zn and <sup>60</sup>Co nuclides was simulated with Monte Carlo code by using the Chinese adult male phantom library, and the total detection efficiency was calculated. The effect of organ-specific detection

作者简介:武 祯(1980一),男,山西阳泉人,高级工程师,博士,从事辐射防护研究

收稿日期:2016-06-21;修回日期:2016-09-23

基金项目:国家自然科学基金资助项目(11275110,11375103);国家重大科学仪器设备开发专项资助(2012YQ180118);国家科 技重大专项子课题资助项目(2013ZX06002001-007)

<sup>\*</sup>通信作者:李君利, E-mail: lijunli@tsinghua.edu.cn

efficiency and total detection efficiency on virtual calibration was studied. The results show that the contribution of nuclides like <sup>65</sup>Zn in the organs other than the lung can not be neglected in the virtual calibration. The total detection efficiency of the lung counter for <sup>65</sup>Zn and <sup>60</sup>Co nuclides decreases with the increase of weight at the same height, and the decreased proportion for <sup>65</sup>Zn varies with the time after intaking. For each phantom, the total detection efficiency decreases with the increase of time. The results prove that the radionuclide biokinetic distribution and morphological variation have a great influence on the total detection efficiency of the lung counter, which varies with nuclides. **Key words**: virtual calibration; phantom library; biokinetic model; detection efficiency

活体测量是内照射监测中常用的一种方 法,具有测量时间短、精确度高的特点[1-3]。在 测量前,需通过校准得到某一监测条件下探 测器对体内放射性核素的探测效率[4-6]。在活 体测量的肺部监测中,通常认为进入探测器 的射线均来自肺部,而忽略其他器官中沉积 的放射性核素对于肺部计数器计数的贡献。 由于放射性核素在体内生物动力学代谢的差 异,有些情况下这种忽略可能会造成较大的 误差[7-8]。此外,实际监测中,若受检者与校准 所用参考体模之间形态差异较大,也可能导 致显著的误差<sup>[9-14]</sup>。鉴于核素在体内的生物 动力学分布和体模形态差异均可能会对肺部 计数器校准结果产生影响,在探测效率计算 中需综合考虑。然而,目前鲜有研究同时考 虑这两个因素的影响,因此有必要对不同体 型的体模,在不同时刻(对应不同的核素生物 动力学分布)的总探测效率进行计算分析,从 而能更精确地评估内照射剂量。

本文以<sup>65</sup>Zn 和<sup>60</sup>Co 核素为例,在已建立的 中国成年男性坐姿体模库<sup>[15]</sup>的基础上,采用蒙 特卡罗程序模拟计算参考体模下核素在不同器 官中沉积时肺部计数器的探测效率,分析肺部 以外其他器官源对于总探测效率的贡献及其随 时间的变化;计算探测器对 170 cm 身高不同体 模中器官源的探测效率及不同时刻的总探测效 率,分析核素生物动力学分布和体模形态变化 对总探测效率的影响。

# 1 材料与方法

内照射活体测量中的校准是指通过在体内 放置已知活度的放射源,测量体外探测器的计数 率,由此得到探测器的探测效率 ε 的过程,则:

$$\epsilon = \frac{N}{A\eta t} \tag{1}$$

其中:N为探测器的计数;A为器官或全身的 某种放射性核素的活度,Bq;η为每次衰变放出 某种能量γ射线的发射率;t为测量时间,s。

虚拟校准是使用人体计算模型和蒙特卡罗 方法实现探测器的校准。若假设放射性核素沉 积在某一器官内,则可通过蒙特卡罗模拟计算 获得体外探测器对该器官源的探测效率  $\epsilon_{organ}$ 。 对于不同的器官,可分别校准得到对应该器官 源的探测效率  $\epsilon_i(i=1,2,3,\cdots)$ 。当人体摄入 1 Bq 放射性核素后,设 t 时刻各器官中核素的 滞留量分别为 $m_i(t)(i=1,2,3,\cdots)$ ,则定义该 时刻体外肺部计数器的总探测效率  $\epsilon_t(t)$ 为:

$$\mathbf{\varepsilon}_{t}(t) = \sum_{i} \mathbf{\varepsilon}_{i} m_{i}(t) \tag{2}$$

ε<sub>ι</sub>(t)对应人体摄入1Bq放射性核素后,体 外探测器在该时间点的计数率理论值。本文虚 拟校准过程如图1所示。在内照射监测中,通 过将实际探测器计数率除以总探测效率,即可 得到核素的摄入量,进而可计算内照射待积有 效剂量。



图 1 虚拟校准过程示意图 Fig. 1 Scheme of virtual calibration

## 1.1 中国成年男性坐姿体模库

本文使用中国成年男性坐姿体模库进行虚 拟校准计算。这一体模库基于 CRAM 体素体 模<sup>[16-17]</sup>建立,包含 170 cm 参考身高下 54~ 80 kg之间 12 种不同体重的体模<sup>[15]</sup>。其中,每 个体模包含 108 个不同的器官组织,基本涵盖 了 ICRP103 号报告<sup>[18]</sup>中要求的所有辐射敏感 器官,且大部分器官组织的质量与中国参考值 的相对误差在 2%以内。为便于在实际测量中 应用,该体模库采用坐姿形态。代表中国成年 男性参考人(身高 170 cm、体重 63 kg)的坐姿 面元体模 CRAM\_Sit 如图 2 所示。



图 2 CRAM\_Sit 体模 Fig. 2 CRAM\_Sit phantom

### 1.2 探测器和测量几何条件

本文采用的探测系统是由水平并排对称放 置于后背的两个相同的 NaI(Tl)探测器组成。 单个 NaI 晶体尺寸为 73.64 mm(直径)× 74 mm(高度),外面包有氧化镁保护层和铝壳, 具体结构如图 3 所示。两个探测器前端面正对 人体,放置于体后,距离人体后背表面约 2 cm; 探测器端面的中心点分别对准左右肺的中心,两 者相距 13 cm;两个探测器距离头顶 43.5 cm。

#### 1.3 滞留量计算

放射性核素摄入体内后,不仅随着时间衰减,而且会在人体内各器官之间转移输运。 DCAL是由美国橡树岭国家实验室研发的内照 射剂量计算软件,其中的ACTACAL模块可计 算核素在体内的生物动力学代谢过程。本文利 用该模块计算摄入1Bq放射性核素后,不同时 刻体内各器官中的核素滞留量。



图 3 NaI 探测器结构 Fig. 3 Structure of NaI detector

#### 1.4 蒙特卡罗虚拟校准计算

基于上述条件,虚拟校准计算分为以下两 部分。

1)分别模拟计算参考体模(身高 170 cm、 体重 63 kg)中<sup>65</sup> Zn 与<sup>60</sup> Co 核素在不同器官中 均匀分布时,体外两个 NaI 探测器对各器官源 的探测效率之和,再结合这些器官中核素的滞 留量得到肺部计数器的总探测效率。由此可分 析忽略其他器官源对总探测效率的贡献时可能 造成的误差。

2)选取身高 170 cm,体重分别为 54、58、 63、70、80 kg 的 5 种体模,模拟计算肺部计数 器对不同器官内沉积的<sup>65</sup> Zn 与<sup>60</sup> Co 核素的探 测效率及总探测效率,进而分析不同时刻的总 探测效率随体重的变化关系。

本文使用 MCNP 程序模拟计算器官源的 探测效率。为提高模拟计算效率,采用该程序 自带的源偏倚技巧。运算粒子数均为 3×10<sup>6</sup>, 计算结果的不确定度均在 5%以内。

#### 2 结果与讨论

#### 2.1 肺部以外其他器官源对总探测效率的影响

本文使用 DCAL 软件计算<sup>65</sup> Zn 与<sup>60</sup> Co 核 素在人体内 1~1 000 d 不同器官中的核素滞 留量,如图 4 所示。放射性活度中值空气动力 学直径(AMAD)设为 1 µm,吸收类型为 M 类。

使用体素化的 CRAM\_Sit 体模,假设<sup>65</sup> Zn 与<sup>60</sup>Co 核素在选定器官中均匀分布,模拟计算 得到肺部计数器对于各器官源的探测效率如 图 5所示。可看出,肺部计数器对某些器官源 的探测效率与对肺源的探测效率在同一数量



图 4 不同器官中<sup>65</sup>Zn 和<sup>60</sup>Co 核素滞留量随时间的变化 Fig. 4 Retained activity of <sup>65</sup>Zn and <sup>60</sup>Co nuclides in different organs as a function of time





级,因此,当放射性核素在这些器官中的滞留量 与肺部差异不大时,这些器官源对肺部计数器 总探测效率的贡献不可忽视。根据式(2)计算 得到不同时刻肺部计数器的总探测效率及忽略 其他器官源贡献而仅考虑肺源时的总探测效率 如图 6 所示。可看出,对于<sup>60</sup> Co 核素,在 1~ 5 d内肺部以外其他器官源对总探测效率有贡 献,第1d其他器官源的贡献占总探测效率的 22.9%,第5d占8.13%,10d后基本可忽略其 他器官源,可只考虑肺源对总探测效率的贡献。 对于<sup>65</sup>Zn 核素,在1~1000 d 内其他器官源的 贡献占较大比重,第1d为34.2%,第100d为 50.5%,第 500 d 为 87.7%。这是因为<sup>65</sup> Zn 核 素除肺部外还主要滞留在全身的骨骼和软组织 中(图 4)。若在实际监测中忽略这部分计数, 将会造成内照射剂量的严重高估。因此,对于 不同核素,由于在体内的代谢情况不同,将导致 肺部以外其他器官源对肺部计数器的总探测效 率贡献不同,在实际测量中需分类处理。对于 类似<sup>65</sup>Zn的核素,需在肺部计数器虚拟校准时 考虑多个器官源的贡献。

# 2.2 体模形态变化和核素分布对总探测效率 的影响

摄入<sup>65</sup>Zn和<sup>60</sup>Co核素后,肺部计数器对身高 170 cm,体重分别为54、58、63、70、80 kg的5种 体模中不同器官源的探测效率如图7所示。可 看出,随体重增加,肺部计数器对不同器官源的 探测效率逐渐减小。当体重从54 kg增加到 80 kg时,探测器对肺部沉积的<sup>65</sup>Zn核素的探测 效率降低了60.1%,对<sup>60</sup>Co核素降低了58.4%。 这是因为人体内软组织的含量随体重而增加,导 致对体内产生的γ射线的衰减作用增强。

根据探测器对器官源的探测效率和体内 <sup>65</sup>Zn与<sup>60</sup>Co核素的生物动力学分布,可得到1~ 300 d内不同时刻肺部计数器的总探测效率随 体重的变化(图8)。可看出,当体重从54 kg增









Fig. 7 Organ-specific detection efficiency of lung counter for five phantoms



图 8 不同时刻总探测效率随体重的变化 Fig. 8 Total detection efficiency as a function of weight at different moments

加到 80 kg 时,不同时刻肺部计数器的总探测 效率均为单调递减。这是由于探测器对不同 器官源的探测效率随体重的增加而减小,从 而在核素分布相同的情况下总探测效率也随 体重的增加而降低。对于<sup>65</sup>Zn 核素,第1d探 测器对 54 kg 和 80 kg 体重体模的总探测效率 相差 52.6%,第 50 d 相差 49.2%,第 300 d 相 差 39.7%;对于<sup>60</sup>Co核素,第 1 d 两者 相差 54.9%,第 50 d 相差 56.6%,第 300 d 相差 52.1%。可见,体重变化对于肺部计数器的总 探测效率有较大影响。

此外,对于不同核素,体重对总探测效率的

影响随时间的变化情况不同。由图 4 可知,在 1~300 d 内,<sup>60</sup> Co 核素在肺部的沉积量远大于 其他器官,总探测效率主要由肺源贡献。当体 重从 54 kg 增加到 80 kg 时,探测器对肺部<sup>60</sup>Co 核素的探测效率降低了 58.4%,接近于 1~300 d 内总探测效率的下降比例。因此,虽然不同时 刻<sup>60</sup>Co核素在人体内的分布不同,但体重增加 导致的总探测效率降低与肺源探测效率的降低 近似,基本保持稳定。65 Zn 核素除肺部外,还主 要沉积在软组织中。1~50 d内,<sup>65</sup> Zn在两者 中的沉积量变化不大,总探测效率随体重的增 加而降低的比例保持稳定。50 d 后,<sup>65</sup> Zn 核素 在肺部的沉积量较在软组织中随时间降低得迅 速,体重对总探测效率的影响从 49.2%(50 d) 降低到 39.7%(300 d)。综上可知,对于主要沉 积在肺部的核素,在不同时刻,肺部计数器针对 不同体重体模的总探测效率基本保持固定比例 (近似肺部器官源探测效率的比例);对于主要 沉积在多个器官中的核素,则体重对总探测效 率的影响可能会随时间变化。

肺部计数器对于同一体型体模的总探测效 率随时间增加而降低。这是因为随着放射性核 素的衰变和人体的代谢,各器官中核素的滞留 量整体呈下降趋势,从而导致总探测效率降低。

### 3 结论

本文研究了核素生物动力学分布和体模形 态变化对肺部计数器虚拟校准的影响。结果表 明,对于<sup>65</sup>Zn核素,在很长时间范围内肺部以 外其他器官源的贡献不可忽视;在同一身高下, 器官源探测效率和总探测效率均随体重增加而 减小;1~300 d之间体重对<sup>60</sup>Co核素总探测效 率的影响基本随时间保持稳定,但对<sup>65</sup>Zn核素 总探测效率的影响在 50 d 后随时间降低;对于 同一体型,体模的总探测效率随时间的增加而 减小。由此证明,核素生物动力学分布和体模 形态的差异对肺部计数器总探测效率均有较大 影响,且对不同核素影响会有不同。

在活体测量的肺部监测中,对于除肺部以 外沉积在其他器官中的放射性核素,需要在效 率校准时考虑这些器官源的贡献,否则将会造 成内照射剂量的高估;对于体型偏瘦和偏胖的 监测对象,需注意可能的剂量高估和低估。相 比于仅使用参考人体模进行虚拟校准计算,使 用具有不同体型的体模可很大程度上提高校准 结果的准确性。

## 参考文献:

- [1] ACHA R, BREY R, CAPELLO K. A Monte Carlo simulation of the in vivo measurement of lung activity in the Lawrence Livermore National Laboratory torso phantom[J]. Health Physics, 2013, 104(2): 211-217.
- [2] 刘立业,马吉增,张斌全.基于 Livermore 模型 CT 图片构建人体躯干数字体模及其在肺部计数 器虚拟刻度中的应用[J].辐射防护,2007,27 (5):264-271.

LIU Liye, MA Jizeng, ZHANG Binquan. Voxel phantom based on the CT images of Livermore torso phantom and its application in virtual calibration of a real in-vivo lung counting system[J]. Radiation Protection, 2007, 27(5): 264-271(in Chinese).

- [3] 张斌全,马吉增,程建平,等.使用人体躯干物理 模型的 CT 模型和蒙特卡罗方法校准肺部计数 器[J].辐射防护,2006,26(2):85-92.
  ZHANG Binquan, MA Jizeng, CHENG Jianping, et al. Calibration of lung counter using a CT model of torso phantom and Monte Carlo method[J]. Radiation Protection, 2006, 26(2): 85-92(in Chinese).
- [4] KRAMER G H, HAUCK B M, ALLEN S A.
   Comparison of the LLNL and JAERI torso phantoms using Ge detectors and phoswich detectors
   [J]. Health Physics, 1998, 74(5): 594-601.
- [5] HUNT J G, MALATOVA I, FOLTANOVA S, et al. Calibration of in vivo measurement systems using a voxel phantom and the Monte Carlo technique[J]. Radiation Protection Dosimetry, 2000, 89(3-4): 283-286.
- [6] HUNT J G, BERTELLI L, DANTAS B M, et al. Calibration of in-vivo measurement systems and evaluation of lung measurement uncertainties using a mathematical voxel phantom[J]. Radiation Protection Dosimetry, 1998, 76(3): 179-184.
- [7] MORALEDA M, GÓMEZ-ROS J M. Skeletal contribution in lung measurements for the in vivo assessment of <sup>241</sup>Am[J]. Radiation Measurements, 2010, 45(1): 136-138.

- [8] LAMART S, BLANCHARDON E, MOLO-KANOV A, et al. Study of the influence of radionuclide biokinetics on the efficiency of in vivo counting using Monte Carlo simulation[J]. Health Physics, 2009, 96(5): 558-567.
- [9] KRSTIC D, NIKEZIC D. Efficiency of wholebody counter for various body size calculated by MCNP5 software[J]. Radiation Protection Dosimetry, 2012, 152(1-3); 179-183.
- [10] SHYPAILO R J, ELLIS K J. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data[J]. Physics in Medicine & Biology, 2011, 56 (10): 2 979-2 997.
- [11] LIYE L, FRANCK D, De CARLAN L, et al. Application of Monte Carlo calculation and OE-DIPE software for virtual calibration of an in vivo counting system[J]. Radiation Protection Dosimetry, 2007, 127(1-4): 282-286.
- [12] HEGENBART L, NA Y H, ZHANG J Y, et al. A Monte Carlo study of lung counting efficiency for female workers of different breast sizes using deformable phantoms[J]. Physics in Medicine & Biology, 2008, 53(19): 5 527-5 538.
- [13] FARAH J, BROGGIO D, FRANCK D. Examples of mesh and NURBS modelling for in vivo

lung counting studies [J]. Radiation Protection Dosimetry, 2011, 144(1-4): 344-348.

- [14] FONSECA T C F, BOGAERTS R, LEBACQ A L, et al. Study of the counting efficiency of a WBC setup by using a computational 3D human body library in sitting position based on polygonal mesh surfaces[J]. Health Physics, 2014, 106 (4): 484-493.
- [15] CHEN Y, QIU R, LI C, et al. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement
  [J]. Physics in Medicine & Biology, 2016, 61(5): 2 124-2 144.
- [16] LIU L, ZENG Z, LI J, et al. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures [J]. Physics in Medicine & Biology, 2009, 54(21): 6 645-6 673.
- [17] LIU L, ZENG Z, LI J, et al. An ICRP-based Chinese adult male voxel model and its absorbed dose for idealized photon exposures: The skeleton [J]. Physics in Medicine & Biology, 2009, 54 (21): 6 675-6 690.
- [18] International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection[R]. Oxford: Elsevier, 2007.