氢化钛镍合金阴极真空弧放电离子特性研究

赵光义1,2,王腾钫1,吴 聪2,李正宏2

(1.复旦大学现代物理研究所,上海 200433;2.中国工程物理研究院核物理与化学研究所,四川 绵阳 621900)

摘要:本文将氢化钛镍合金材料应用于强流长脉冲(200 A/270 μ s)真空弧放电实验中,该材料能在强流 长脉冲真空弧放电产生的高温条件下保持较好的稳定性。使用飞行时间谱仪获得了氢化钛镍合金阴极 真空弧放电产生的离子电荷态分布和离子成分。结果表明:Ti^{*+}和 Ni^{*+}电荷态为 1+、2+和3+,在放 电过程的早期(0~30 μ s),H⁺成分随时间逐渐增加,在 30 μ s 时达到最大比例 57%,而 Ti^{*+}和 Ni^{*+}(n= 1,2,3)离子成分随时间逐渐减少,在 30 μ s 时达到最小比例 43%;在放电过程的后期(30~270 μ s), H⁺成分迅速下降且在 75 μ s 后保持在总离子流的 12%左右直至放电结束。 随时间逐步增加,且在 75 μ s 后保持在总离子流的 88%左右直至放电结束。

关键词:真空弧放电;氢化钛镍合金;离子电荷态;离子成分

中图分类号:TL65 文献标志码:A 文章编号:1000-6931(2020)04-0577-06 doi:10.7538/yzk.2019.youxian.0848

Study of Ion Characteristic of Vacuum Arc Ion Source with Titanium-nickel Alloy Hydride Cathode

ZHAO Guangyi^{1,2}, WANG Tengfang¹, WU Cong², LI Zhenghong²

Institute of Modern Physics, Fudan University, Shanghai 200433, China;
 Institute of Nuclear Physics and Chemistry,
 China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: The titanium-nickel alloy hydride was applied to high-current long pulse (200 A/270 μ s) vacuum arc discharging in this paper, which is more resistant to fragmentation and maintains good stability under high temperature condition generated by high-current long pulse vacuum arc discharging. In addition, an experimental study of the ion charge state distribution and mass-charge component of vacuum arc discharging with titanium-nickel alloy hydride cathode by the time-of-flight method was carried out for the first time. The results show that titanium ion and nickel ion have charge states of 1+, 2+, and 3+. Meanwhile, in the early stage of the discharging process (0-30 μ s), the composition of H⁺ gradually increases with time, and reaches a maximum ratio of 57% at 30 μ s, while the compositions of Tiⁿ⁺ and Niⁿ⁺ (n = 1, 2, 3) rapidly

收稿日期:2019-11-20;修回日期:2020-01-07

基金项目:国家自然科学基金资助项目(11575162)

作者简介:赵光义(1989一),男,甘肃古浪人,博士研究生,核能科学与工程专业

网络出版时间:2020-03-16;网络出版地址:http://kns.cnki.net/kcms/detail/11.2044.TL.20200313.1712.007.html

decrease with time, and reach a minimum ratio of 43% at 30 μ s; in the later stage of the discharging process (30-270 μ s), the composition of H⁺ begins to decrease rapidly and remains unchanged at around 12% after 75 μ s until the end of the pulse, and the compositions of Tiⁿ⁺ and Niⁿ⁺ (n=1, 2, 3) gradually increase with time and remain around 88% after 75 μ s until the end of the pulse.

Key words: vacuum arc discharging; titanium-nickel alloy hydride; ion charge state; ion composition

金属真空弧离子源[1-2]由于其束流强、结构 紧凑、高电荷态等特性,已被广泛应用于等离子 体[3]、离子注入[4]、核技术应用等领域[5-9]。氢化 钛电极是将金属钛放入高温氢气或氢的同位素 气体中形成的储气式电极,采用这种储气式金属 钛作为放电材料的离子源称为氢化钛真空弧离 子源^[10]。当真空弧放电开始时,由于较低的解 吸附温度[11],金属钛中的氢或氢的同位素会从 电极内部释放并伴随强烈的电离过程,从而产生 离子,该离子束再经过引出及加速空间即可应用 于中子发生器和中子管[12]。但在高温条件下, 当氢化钛材料中原子比(氢/钛)超过1.5时该材 料会发生碎裂[13-14],从而大幅减少离子源的使用 寿命。Cheifetz 等^[15]采用玻璃片上镀钛膜再充 氢的方法解决短脉冲小电流(10 µs/100 A)放电 材料易碎问题,并获得了无加速能量下短脉冲真 空弧放电扩散区的飞行时间谱,2012年 Chen 等[16]用同样的方法得到了相近的结果。

由于氢化钛合金在真空弧放电产生的高温 条件下极易发生碎裂,目前对于氢化钛阴极长 脉冲(脉冲宽度大于 10 µs,峰值电流大于100 A) 真空弧放电的研究相对较少,相比于短脉冲真 空弧放电,长脉冲真空弧放电持续时间更久,峰 值电流更强,因此长脉冲真空弧放电在阴极表 面产生的温度也更高。在这种情况下,用 Cheifetz 等的方法制作的氢化钛金属膜会发生 碎裂,因此该合金材料将不再适用于长脉冲真 空弧离子源。本文采用氢化钛镍合金作为真空 弧放电的阴极材料,该合金材料在常温条件下 性质稳定且不会释放气体,在高温(3 000~ 5 000 K)条件下不易碎裂且能保持较好的稳 定性,从而解决长脉冲真空弧放电阴极材料 的固化成型问题。此外,本文使用飞行时间 谱仪[17-20]测量氢化钛镍合金阴极真空弧放电 产生的离子电荷态分布和离子成分。

1 实验

实验中所需要的氢化钛镍合金阴极材料由 中国科学院沈阳金属研究所制造,钛与镍粉末 以1:1的比例在真空中混合烧结形成钛镍合 金,然后将该合金置入高温氢气中形成氢化钛 镍合金,其中氢钛比(原子比)为1.5。钛镍合 金同时具备钛的可塑性和镍的可延展性,实验 中测得该合金的沸点在 3 000 K 左右。为比较 不同结构阴极的放电效果,加工了外径8 mm、 长度 36 mm 的实心和空心(直径为 4 mm 的通 孔)两种圆柱体阴极,空心阴极结构如图1所 示。氢化钛镍合金阴极真空弧放电离子分布特 性研究所需的实验设备由俄罗斯科学院大电流 电子研究所提供。该设备主要由真空弧离子 源、引出-抑制电极、飞行时间谱仪、法拉第筒、 真空系统、电源系统、控制测量系统等组成。设 备原理示意图如图2所示。

图 1 氢化铽铼百亚至心圆性评例物 Fig. 1 Hollow cathode of titanium-nickel alloy hydride

由于阴阳极间隙的临界击穿电压为 1.5 kV, 因此当放电电压(700 V/270 µs)施加在阴阳极 上时,阴阳极间隙不会发生自击穿。当在触发 电极与阴极之间施加半高宽为 50 µs、幅度为 18 kV的脉冲电压时,由于强电场的作用,阴极 表面微凸起爆炸产生等离子体^[21],该等离子体 加热阴极使得阴极材料变成气体进入阴阳极间 隙。同时,被气化的阴极材料与电子相互碰撞 发生电离,当阴阳极间隙中的离子数密度足够 大时,阴阳极之间迅速击穿产生弧放电,弧放电

图 2 实验设备原理示意图 Fig. 2 Schematic diagram of experimental equipment

电流进一步烧蚀阴极材料产生等离子体,最终形 成覆盖整个阴极表面的等离子体。在高等离子 体密度梯度作用下,氢离子、钛离子和镍离子扩 散进入阴阳极间隙,当在引出电极和地电极之间 施加一高压脉冲时离子束流被引出。为使等离 子体发射面稳定,引出(加速)电极由细密的金属 栅网构成,其电位设置为 30 kV,同时离子源也 处于此高电位;抑制(减速)电极设置负几千伏电 压,以抑制低能二次电子对离子束流的影响;第 3 电极设置为地电位,第1电极与第3电极之间 的引出电压为 30 kV。飞行时间离子门、漂移 管、法拉第筒设置在直径为25 cm、长度为120 cm 的不锈钢圆筒中,飞行时间离子门安装在漂移管 的入口端,法拉第筒放置在漂移管的出口端,从 离子门到法拉第筒的距离为1m。离子门由多层 同轴环形金属栅板组成,根据偏转半径的需要, 越靠近外层的金属栅板越宽。同时离子门的中 心部分设置1块直径约5 cm的挡板,阻止轴心部 分(发散)的离子束进入法拉第筒,以减小测量误 差。在束流的漂移过程中,内层环形栅板接偏转 脉冲低(地)电位,外层环形栅板接偏转脉冲电压 (5 kV/100 ns)。上述离子门和施加在离子门上 的脉冲电压特性即可使氢化钛镍合金材料放电 产生的离子被法拉第筒接收,且根据离子飞行 1 m后到达时间的不同分辨出不同质荷比的离 子。为防止法拉第简二次电子发射对离子束流 的影响,在法拉第筒前部设置一约40 mT 带横 向磁场的永磁铁。法拉第筒信号由存储示波器 记录,通过分析法拉第筒信号得到离子的电荷态 和不同质荷比的离子比例。

2 结果与讨论

实验中,真空弧离子源、引出系统、飞行时 间离子门和法拉第简放置在真空度为3× 10⁻⁴ Pa的真空腔内。离子源放电弧电流 I_d 为 200 A,放电脉冲波形峰值宽度为270 μs,离子源 典型放电电流波形如图3所示。当离子束引出 电压为30 kV时,引出脉冲离子束流峰值可达 200 mA,离子门控制信号幅度为5 kV,半高宽为 100 ns。同时,为消除阴极表面附着物和氧化物 对实验结果的影响,在数据记录前,离子源已进 行55次放电。实验结果表明,前33次放电到55 次放电,离子束成分已保持不变,因此实验数据 的记录从离子源第55次放电开始。此外,为消 除前一次放电产生的热效应对下一次放电的影 响,实验中离子源每30 s运行1次。

在真空弧放电的 0~40 μs 期间, 阴阳极间 隙导通开始, 电子与原子碰撞主要发生在阴极 附近, 维持主弧电流的主要是电子电流, 此时阴

Fig. 3 Typical discharging current waveform

极表面会出现具有一定亮度、点状的阴极斑。 在焦耳热作用及带电离子的不断轰击下,阴极 斑处阴极温度迅速上升,当温度高干550K时, 处于某种相态的氢化钛镍合金开始大量释放氢 气^[22],此时氡离子相对比例最高。图 4a 为离 子门开门时间在放电脉冲波形 30 µs 时刻的离 子飞行时间谱。在 45~75 µs 阶段,主弧电流 增加,阴极温度上升到3000K左右时(钛镍合 金沸点),金属钛和镍开始被熔化,同时阴极斑 附近被熔化的钛原子和镍原子开始被电离,因 此钛离子和镍离子占比开始增大,氢离子占比 相对减小。图 4b 为离子门开门时间在放电脉 冲波形 75 μs 时刻的离子飞行时间谱。在 75~ 190 us 阶段,当阴极温度继续上升到 4 000~ 5 000 K时, 钛原子和镍原子开始被充分气化目 被电离,此时阴阳极间导通处于稳定状态,主弧 电流基本维持不变,氢离子、钛离子和镍离子比 例维持稳定状态。图 4c 为离子门开门时间在放 电脉冲波形 135 μs 时刻的离子飞行时间谱。在 190~270 µs 阶段,阴极斑温度开始下降,当阴极 温度低于 3 000 K 时,处于某种相态的钛镍合金 又开始释放氢气而本身并未被气化电离,因此氢 离子相对比例增大,而钛离子和镍离子相对比例 开始减小,图4d为离子门开门时间在放电脉冲

波形 250 μs 时刻的离子飞行时间谱。

由于真空弧放电具有不稳定性,为减小放 电不稳定性带来的误差,实验中采用128次放 电求平均的方法来获得真空弧放电的各离子成 分。表1列出空心及实心圆柱体氢化钛镍合金 阴极在稳定放电期期间(75~190 μs)的离子 束成分,其中钛离子电荷态为1+、2+和3+, 镍离子电荷态为1+、2+和3+。由表1可知, 在放电过程的稳定期(75~190 us),Tiⁿ⁺和 Niⁿ⁺ (n=1, 2, 3)的相对比例较高, Ti²⁺、Ti³⁺和 Ni²⁺的比例分别为 34%、23%和 23%,H⁺的比 例为12%,该数据说明真空弧放电易产生多电 荷态金属离子,这与文献[23]的结果是一致的。 同时从表1可知,两种结构阴极所得各种离子 的成分差异在5%以内,考虑到真空弧放电自 身的波动,实心阴极和空心阴极放电所得离子 成分基本一致。

为了测量空心圆柱体氢化钛镍合金阴极真 空弧放电产生的 H⁺和其他离子随时间的分布 特性,离子门开门时间相对触发脉冲进行了延 迟。延迟时间设置方式为: $0\sim55\ \mu s$ (每隔 5 μs 设置 1 次开门信号),55 \sim 115 μs (每隔 10 μs 设 置 1 次开门信号),115 \sim 260 μs (每隔 20 μs 设 置 1 次开门信号)。由于 H⁺和 Ti²⁺离子在离

Fig. 4 Mass-charge spectrum of ion beams at different moments

子束流中占比最大,表 2 列出 H⁺和 Ti²⁺离子 成分随放电时间的变化。

表 1 空心阴极和实心阴极放电过程 稳定期离子束流成分

Table 1 Ion beam component of hollow and

solid cathodes during stable discharging period

离子种类	离子成分/%		
	空心	实心	
Ni ⁺	1.7	1.7	
Ti ⁺	2.8	3.0	
Ni ²⁺	23	24	
Ti ²⁺	34	33	
Ni ³⁺	3.5	3.3	
Ti ³⁺	23	23	
H^+	12	12	

表 2 H⁺ 和 Ti²⁺ 离子成分随放电时间的变化

Table 2 Variation of H^+ and Ti^{2+} ion

compositions	with	discharging	time

时间/	H^+	Ti ²⁺	时间/	H^+	Ti ²⁺
μs	成分/%	成分/%	μs	成分/%	成分/%
20	0.52	0.07	105	0.11	0.34
25	0.55	0.14	115	0.11	0.34
30	0.57	0.17	135	0.11	0.33
35	0.56	0.23	150	0.12	0.34
40	0.32	0.25	170	0.10	0.36
45	0.34	0.25	190	0.10	0.30
55	0.29	0.27	200	0.11	0.29
65	0.23	0.27	220	0.10	0.28
75	0.17	0.28	240	0.10	0.27
85	0.13	0.32	250	0.10	0.26
95	0.12	0.35	260	0.10	0.24

从表 2 可看出,在放电过程的初期,H⁺的 占比相对较高,30 μ s 时达到峰值 57%,35 μ s 后迅速减小,且在 75 μ s 后保持稳定直至放电 结束;在放电过程的初期,Ti²⁺的占比相对较低 且随时间缓慢增加,在 75 μ s 后保持稳定直至 放电结束。根据焦耳加热定律^[24],上述现象可 用阴极温度变化来解释:放电过程的开始阶段, 在焦耳热作用及带电离子的不断轰击下,阴极 表面阴极斑处温度迅速上升,当阴极温度高于 550 K 时,处于某种相态的氢化钛镍合金开始 大量释放氢气,此时钛镍等金属被气化相对较 少,因此在放电过程的开始阶段 H⁺相对比例 较大而 Tiⁿ⁺和 Niⁿ⁺(n=1,2,3)相对比例较小。 在放电过程的稳定阶段,当阴极温度继续上升 到 3 000~5 000 K 时,阴极表面的金属钛和金 属镍开始被气化并电离,因此在放电稳定阶段, 随温度的升高,Tiⁿ⁺和 Niⁿ⁺(n=1,2,3)的比例 较大而 H⁺的相对比例较小。

3 结论

本文将氢化钛镍合金材料应用于强流长脉 冲直空弧离子源放电,由于氢化钛镍合金具备 钛的可塑性和镍的可延展性,该材料在真空弧 放电产生的高温(3 000~5 000 K)条件下不易 碎裂且仍保持较好的稳定性。同时用飞行时间 谱实验方法测量了氢化钛镍合金真空弧离子源 放电离子分布特性和离子成分,获得了强流 (200 A/270 µs)状态下氢化钛镍合金的离子 谱,实验中测得钛离子的电荷态为1+、2+和 3+, 镍离子的电荷态为1+和2+和3+。同 时在放电过程的早期,H⁺的相对比例较高。 在放电过程的稳定期,Tiⁿ⁺和Niⁿ⁺(n=1,2,3) 的相对比例较高, Ti^{2+} 、 Ti^{3+} 和 Ni^{2+} 分别为 34%、23%和23%,H⁺的比例为12%。该研究 为氢化钛镍合金阴极真空弧放电特性研究提供 了技术借鉴,同时为解决测井用长脉冲真空弧 离子源寿命具有重要的指导意义。

感谢俄罗斯科学院大电流电子研究所 Oks 教授对研究的指导,同时感谢俄罗斯科学院大电 流电子研究所 Yushkov、Savkin 博士对实验工作 的帮助,并感谢中国科学院沈阳金属研究所刘实 研究员、熊良银博士对本研究提供的帮助。

参考文献:

- BROWN I G, WASHBUM J. The MEVVA ion source for high current metal ion implantation
 [J]. Nuclear Instruments and Methods in Physics Research Section B, 1986, 21(1); 201-204.
- [2] 唐平瀛,向伟,王春燕,等.真空弧离子源引出束 流在加速空间的分布[J].原子能科学技术, 2005,39(1):93-96.

TANG Pingying, XIANG Wei, WANG Chunyan, et al. Spatial beam distribution of vacuum arc ion source in accelerating area[J]. Atomic Energy Science and Technology, 2005, 39(1): 93-96(in Chinese).

[3] NIKOLAEV A G, YUSHKOV G Y, SAVKIN K P, et al. Upgraded vacuum arc ion source for metal ion implantation[J]. Review of Scientific Instruments, 2012, 83(2): 02A501.

- [4] ZENG Z M, ZHANG T, TANG B Y, et al. Surface modification of steel by metal plasma immersion ion implantation using vacuum arc plasma source[J]. Surface and Coatings Technology, 1999, 120(1): 659-662.
- [5] BROWN I G, OKS E M. Vacuum arc ion sources-a brief historical review [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1 222-1 228.
- [6] BROWN I G. Vacuum arc ion sources[J]. Review of Scientific Instruments, 2014, 65 (10): 3 061-3 081.
- [7] BROWN I G, GODECHOT X. Vacuum arc ion charge-state distributions[J]. IEEE Transactions on Plasma Science, 1991, 19(5): 713-717.
- [8] ANDERS A. Ion charge state distributions of vacuum arc plasmas[J]. The Origin of Species, 1997, 55(1): 969-981.
- [9] BUGAEV S P, NIKOLAEV A G, OKS E M, et al. The 100 kV gas and metal ion source for high current ion implantation[J]. Review of Scientific Instruments, 1992, 63(4): 2 422-2 424.
- [10] 唐建,邓春凤,伍春雷,等. 脉冲金属氢化物真空 弧放电等离子体发射光谱特性[J]. 强激光与粒 子束,2015,27(11):41-46.
 TANG Jian, DENG Chunfeng, WU Chunlei, et al. Spectral property investigation of pulsed metallic hydride vacuum arc discharge plasma[J].
 High Power Laser and Particle Beams, 2015, 27 (11): 41-46(in Chinese).
- [11] 卢金炼,曹觉先. 单个钛原子储氢能力和储氢机 制的第一性原理研究[J]. 物理学报,2012,61 (14):497-502.

LU Jinlian, CAO Juexian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen[J]. Acta Physica Sinica, 2012, 61(14): 497-502(in Chinese).

- [12] WALKO R J, ROCHAU G E. A high output neutron tube using an occluded gas ion source
 [J]. IEEE Transactions on Nuclear Science, 1980, 28(2): 1 531-1 534.
- [13] HIPPSLEY C A, STRANGWOOD M. Embrittlement and crack growth in high temperature intermetallics[J]. Metal Science Journal, 2014, 8(4): 350-358.

[14] DEKHTYAR A I, IVASISHIN O M, MOISEE-

VA I V, et al. The mechanical properties of compact titanium produced from titanium hydride powders using self-propagating high-temperature synthesis[J]. Powder Metallurgy & Metal Ceramics, 2015, 53(9-10): 549-556.

- [15] CHEIFETZ E, ADAR U, DAVARA G. Ions emitted by a pulsed titanium-hydride spark plasma source[C]// Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum. Berkeley: [s. n.], 1996.
- [16] CHEN L, JIN D Z, CHENG L, et al. Ion charge state distribution and ion velocities in the titanium hydride cathodic vacuum arc plasmas [J]. Vacuum, 2012, 86(7): 813-816.
- [17] BROWN I G, GALVIN J E, MACGILL R A, et al. Improved time-of-flight ion charge state diagnostic [J]. Review of Scientific Instruments, 1987, 58(9): 1 589-1 592.
- [18] GUSHENETS V I, NIKOLAEV A G, OKS E M, et al. Simple and inexpensive time-of-flight charge-to-mass analyzer for ion beam source characterization[J]. Review of Scientific Instruments, 2006, 77(6): 301-303.
- [19] TSURUTA K, YAMAZAKI N. Residence time of metal ions generated from microsecond vacuum arcs[J]. IEEE Transactions on Plasma Science, 1993, 21(5): 426-430.
- [20] ANDERS A, ANDERS S, JUTTNER B, et al. Time dependence of vacuum arc parameters[J]. IEEE Transactions on Plasma Science, 1993, 21 (3): 305-311.
- [21] CHUAN J B, WAN H, YANG J, et al. Microstructure characterization of graphite cathodes for explosive field-emission [J]. Applied Mechanics & Materials, 2013, 248(3): 268-273.
- [22] YOSHIHIKO H. Thermal decomposition of titanium hydride and its application to low pressure hydrogen control[J]. Journal of Vacuum Science & Technology A, 1984, 2(1): 16-21.
- [23] ANDERS A. A periodic table of ion charge-state distributions observed in the transition region between vacuum sparks and vacuum arcs[J].
 IEEE Transactions on Plasma Science, 2001, 29 (2): 393-398.
- [24] COLE K. Joule heating of the upper atmosphere[J]. Australian Journal of Physics, 1962, 15(2): 223-236.