用于测量高能 γ 射线的三晶电子对谱仪的研制

刘伏龙^{1,2},吴 笛²,魏继红^{1,2},杨婉莎^{1,2},贺创业²,郭 冰^{2,*},王乃彦^{1,2,*}

(1.北京师范大学 核科学与技术学院 射线束技术教育部重点实验室,北京 100875;

2. 中国原子能科学研究院 核物理研究所,北京 102413)

摘要:为解决高能γ射线的准确测量问题,本文基于自主研发的闪烁晶体探测器研制了一套三晶电子对 谱仪,测量了⁵⁶Co放射源 1.5 MeV 以上γ射线的双逃逸峰能谱。与使用单个 LaBr₈ 探测器所测能谱相 比,三晶电子对谱仪有效降低了峰与连续本底的比值。本文研究结果为准确测量加速器共振核反应 (p,γ)及激光康普顿散射(LCS)产生的高能γ射线奠定了技术基础。

关键词:电子对谱仪;高能γ射线;符合;双逃逸峰

中图分类号:TL814 文献标志码:A 文章编号:1000-6931(2021)02-0336-07 doi:10.7538/yzk.2020.youxian.0168

Development of Three-crystal Electron-pair Spectrometer for Detecting High-energy γ Ray

LIU Fulong^{1,2}, WU Di², WEI Jihong^{1,2}, YANG Wansha^{1,2},

HE Chuangye², GUO Bing^{2,*}, WANG Naiyan^{1,2,*}

(1. Key Laboratory of Beam Technology of Ministry of Education,

College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2. Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China)

Abstract: In order to solve the problem of accurate measurement for high-energy γ ray, a set of three-crystal electron-pair spectrometer was developed based on the selfdeveloped scintillation crystal detector. The double-escape peak energy spectrum above 1.5 MeV γ ray of ⁵⁶Co source was measured. The three-crystal electron-pair spectrometer can effectively reduce the ratio of peak to continuous background compared with LaBr₃ detector. It lays the technical foundation for accurate measurement of high-energy γ ray from nuclear resonance reaction (p, γ) and laser Compton scattering (LCS).

Key words: electron-pair spectrometer; high-energy γ ray; coincidence; double-escape peak

收稿日期:2020-03-18;修回日期:2020-04-19

基金项目:国家重点研发计划资助项目(2016YFA0400502);国家自然科学基金资助项目(11655003,11975316);国家财政部稳 定支持研究经费资助项目(WDJC-2019-02)

作者简介:刘伏龙(1994一),男,山西忻州人,博士研究生,粒子物理与原子核物理专业

^{*} 通信作者:王乃彦, E-mail: wangny@bnu.edu.cn; 郭 冰, E-mail: guobingciae@163.com

高能 γ 射线在爆炸物检测、医学影像成像、 核废料嬗变、核天体物理 p-讨程的关键核反应 研究及核共振荧光研究等方面有着广泛的应 用^[1-3]。目前高能γ射线的产生方式主要有高 能电子的韧致辐射、飞行中正电子湮没、共振核 反 \overline{p} (p, γ)或(n, γ)、激光康普顿散射(LCS) 等^[4]。其中 LCS-γ 源凭借其单色性好、能量连 续可调及亮度高等优势被世界各地广泛建造使 用,其中最具代表性的 LCS 装置——HIGS(美 国)可产生 60 MeV 的高能 γ 射线,国内对此方 式产生高能 γ 射线的研究也在积极地进行 中^[5-6]。另外,中国原子能科学研究院依托 2× 1.7 MeV 串列加速器开展了(p,γ)共振核反应 高能γ源的研究工作,其可产生能量为6~ 17.6 MeV 的高能 γ 射线^[7]。为更好地利用高 能γ射线,精确测量其产额是非常必要的工作。 在有限的探测器体积和实验条件下,高能γ射 线的产额测量会存在如何才能准确的问题。一 般高纯锗探测器(HPGe)在测量10 MeV以下 的 γ 射线时被认为是可靠的^[8];而闪烁晶体探 测器 NaI 探测器和 BGO 探测器在测量 9.17 MeV高能 γ 射线时会有严重的能量非线 性效应,以及由于康普顿坪太高引起的能谱复 杂等问题[7]:电磁量能器虽可测量百兆级别的 高能γ射线,但能量分辨率低,在精确测量高能 γ射线产额方面有一定的弱势^[9]。

用单一的小体积探测器测量高能γ射线时 会由于探测器体积太小不能完全收集光子能 量,导致单一能量的高能γ射线在谱形上会出 现多个峰(如全能峰、单逃逸峰、双逃逸峰)和与 之对应的康普顿坪,这样会使单一γ探测器测 量的能谱变得较复杂,同时对于包含多种能量 的复杂 γ 谱的分析极其困难。若利用两个或多 个晶体使用符合或反符合技术,使得每个能量 仅产生1个峰或增强某个关注峰的强度而抑制 能谱的其他部分,测量的能谱则会变得较简单, 特别适用于多种核素的高能 γ 能谱分析和复杂 本底的高能γ能谱分析,电子对谱仪便由此应 运而生。除闪烁晶体类的电子对谱仪外,电子 对磁谱仪也是一种测量高能 γ 射线的谱仪,虽 然测量精度较高,但是整个测量系统复杂且造 价昂贵,难以实现[10-11]。因此,本文基于自主研 发的闪烁晶体探测器研制一套三晶电子对谱仪 (以下简称电子对谱仪),对⁵⁶Co产生的 1.5~ 4 MeV的高能 γ 射线进行测量研究,为研制能 精确测量(p,γ)共振核反应 γ 源强度的电子对 谱仪奠定基础。

1 电子对谱仪原理

高能γ射线与物质相互作用时主要发生电 子对效应从而产生正负电子对,其中当正电子 的动量衰减至接近零时,会与附近的负电子发 生湮灭,从而背向发射两条 0.511 MeV 的 γ 射 线(运动方向的夹角接近 180°),电子对谱仪利 用这两条 0.511 MeV γ射线与入射高能 γ射 线的三重符合来测量入射高能 γ 射线^[12]。图 1 为电子对谱仪示意图,1个小体积的中心探测 器被夹在两个大体积的外围探测器中间,当两 个外围探测器同时探测到 0.511 MeV γ 信号 时与中心小体积探测器的信号进行符合,这时 所获得的能谱中仅包含所测特征峰的双逃逸 峰,而过滤掉其全能峰、单逃逸峰及康普顿坪 等。因此,电子对谱仪的探测效率虽大幅降低, 但简化了所测能谱,提高了峰与连续本底之比, 有利于准确测量高能 γ 射线的强度,进而可精 确得到γ射线的产额。

A、C——外围探测器;B——中心探测器
 图 1 电子对谱仪示意图
 Fig. 1 Schematic diagram
 of electron-pair spectrometer

20世纪 60 年代初, Tavendale^[13]和 Ewan 等^[14]利用 Ge (Li) 探测器作为中心探测器, ϕ 2 英寸×2 英寸的 NaI 探测器作为外围探测 器研制了最早的电子对谱仪,通过对¹⁴N(d,p) ¹⁵N的 γ 能谱测量,发现极大地改善了测量能谱 的峰康比。Auble 等^[15]对电子对谱仪进行了 改进,外围探测器换成大体积的环形 NaI 晶 体,从而提高了 0.511 MeV γ 射线的探测效 率。1994年,孔祥忠^[16]用高纯锗作为中心探测 器、两块环形塑料闪烁体作为外围探测器组成 电子对谱仪,测量了²² Na 放射源特征峰,电子 对谱仪测量的²² Na特征峰双逃逸峰能谱相比于 使用中心探测器直接测量特征峰的全能峰能 谱,峰与附近本底比改进了 50 倍。

与 HPGe 探测器作为中心探测器相比, LaBr₃ 探测器作为中心探测器不仅可保证较好 的能量分辨率,还可较大地提高电子对谱仪的 探测效率。因此,本工作利用 LaBr₃ 探测器作 为中心探测器,两个大体积的 NaI 探测器作为 外围探测器研制一套电子对谱仪。

2 电子对谱仪的研制

2.1 闪烁晶体探测器的研制

本次实验的测量对象为⁵⁶Co、²²Na等放射 源。选择中心晶体 LaBr₃的尺寸时,既需保证 其对放射源高能特征峰的探测效率,又要保持 其对 0.511 MeV γ 射线的穿透率。通过对 0.511 MeV γ 射线在 LaBr₃ 晶体中的半值厚度 计算,LaBr₃ 晶体尺寸选择为 ϕ 1.5 英寸×1.5 英寸^[17]。在 LaBr₃中心探测器的外围放置两 个自主研制的 ϕ 5 英寸×3 英寸的 NaI 探测器 用来探测 0.511 MeV γ 射线, NaI 探测器 采用了滨松公司 R877 型号的光电倍增管。对 应于 NaI 晶体的荧光衰减时间(230 ns)^[12], 分压器电路采用能谱型分压电路,其中阻抗 R_{c} =50 kΩ。

2.2 闪烁探测器工作电压的选择

光电倍增管只有工作在最佳状态,闪烁探测器才能获得最好的信噪比,因此需进行光电 倍增管的坪特性测量。坪特性测量是指缓慢增加光电倍增管的工作电压时,测量到超过一定 阈值的脉冲数目,当电压增加到一定值时,超过 一定阈值的脉冲数趋于饱和。通过改变光电倍 增管的工作电压,可得到脉冲数与光电倍增管 工作电压的变化关系曲线,即坪曲线。选择坪 区对应的电压范围作为工作电压,这时,即使工 作电压稍有变化,计数率也不会受到影响^[18]。 坪区越广,光电倍增管性能越不易受暗电流变 化的影响,探测器的能量分辨也较好,由此可确 定光电倍增管的工作电压。 使用⁴⁰K 1 460 keV 特征峰进行坪曲线测量的测试线路如图 2 所示,其中多道分析器可设定获取的阈值,只有当探测器输入到多道分析器的信号幅度大于某一数值时才会被获取。 坪曲线测试结果如图 3 所示。

图 2 坪曲线测试线路 Fig. 2 Diagram of experiment for plateau curve

由光电倍增管的坪特性可知,探测器的工作电压应设定在坪区开始电压(V₀)与光电倍 增管最大允许电压之间。测试1号 NaI 探测器 时,当工作电压高于1000 V时,探测器的输出 脉冲数趋于坪区(图 3a),因此1号 NaI 探测器 的工作电压应选择为1000~1500 V;同样,2 号 NaI 探测器在1300~1500 V之间出现了 坪区,因此2号 NaI 探测器的工作电压应选择 为1300~1500 V之间。为保证两个 NaI 探 测器1460 keV 特征峰的输出幅度一致,选择1 号 NaI 探测器的工作电压为1050 V,2 号 NaI 探测器的工作电压为1350 V,LaBr₃ 探测器 的工作电压选择为探测器生产厂商的推荐值 -1700 V。

3 电子对谱仪的测试

使用²² Na 放射源测试两个大体积 NaI 探测 器对 511 keV γ 射线的能量响应,确定 511 keV γ 射线脉冲幅度的输出范围。1 号和 2 号 NaI 探测器测量的²² Na 能谱如图 4 所示,可看出, 两个探测器测量的 511 keV 和1 274.5 keV特征 峰的道址基本一致,且两者的计数率也较接近。 其中,1 号 NaI 探测器 511 keV 全能峰的净计 数率约为 164 s⁻¹,对 511 keV 的分辨率为 8.7%;2 号 NaI 探测器 511 keV 的分辨率为 8.8%。根据两个 NaI 探测器对 511 keV γ射 线的信号输出范围,确定符合线路中外围 NaI 探测器的上、下阈值。

电子对谱仪的符合测试线路如图 5 所示, 3 个探测器的输出脉冲先经前置放大器放大 后,进入主放大器。为保证 3 路信号的同时性, 3 路主放大器信号输入到单道分析器,可根据 能谱的测量范围,调节单道的上、下阈值。此 后,3 路探测器的信号可进行符合,并用符合信 号给获取系统开门,获取中心探测器的能谱。

相对其他放射源,⁵⁶Co放射源可放出3 MeV 能量以上的 γ射线,其特征 γ射线电子对效应 更明显,因此本实验选用⁵⁶Co放射源对电子对 谱仪进行测试,电子对谱仪测试实验设置图如 图 6 所示。

点状的⁵⁶Co放射源放置在距离中心探测器中心位置的 23.3 cm 处,在两个 NaI 探测器 距离放射源近的一侧前放置了足够厚的铅砖 用来防止⁵⁶Co放射源放出的 γ 射线进入外围 NaI 探测器。中心探测器前准直器的开孔大 小为 φ2.5 cm。

图 5 电子对谱仪的符合测试线路

Fig. 5 Diagram of coincidence measurement for electron-pair spectrometer

图 6 电子对谱仪测试实验设置图 Fig. 6 Schematic of experimental setup of electron-pair spectrometer

4 电子对谱仪测试结果

为了确定偶然符合的计数率,在未放置⁵⁶Co 源的情况下,3个探测器符合测量17900s,得 到的能谱如图7所示,最左边的小峰是天然本 底⁴⁰K特征峰1460keV双逃逸峰(峰周围120 道总计数约为60)。对于⁵⁶Co特征峰能区的 500~2500道,每道偶然符合的平均本底计数 小于1(区间内120道总计数约为16)。

图 7 偶然符合能谱 Fig. 7 Energy spectrum of accidental coincidence ⁵⁶Co源进行 481 s 的能谱测量(图 8a),由图 8a 可看出⁵⁶Co源中发射率较高的特征 γ 射线。其 中,计数最高峰为 846.8 keV 全能峰,其次是 511 keV 的全能峰。未进行符合时,由于峰周 围连续本底较高导致发射率较低的其他特征峰 较难清晰辨认,对于某些不易清晰辨认的峰,精 确得到它们的绝对强度变得十分困难。使用电 子对谱仪对⁵⁶Co源进行 65 600 s 的能谱测量得 到的结果如图 8b 所示,能谱中仅包含了⁵⁶Co特 征峰的双逃逸峰。其中,最高峰为 2 598.5 keV 双逃逸峰。由图 8 可知,电子对谱仪的符合测 量不仅可减少连续本底,而且还能简化能谱的 峰形分析。

图 9 为 LaBr₃ 探测器测量⁵⁶Co源特征峰计 数率与电子对谱仪符合测量⁵⁶Co源特征峰计数 率的比,可看出,对于低能量 γ 射线,LaBr₃ 探 测器的计数率远大于电子对谱仪,而对于高能 量 γ 射线,LaBr。探测器的计数率则仅约为电 子对谱仪的 35 倍。这与电子对效应的反应截 面理论相符合,低能量 γ 射线的电子对效应的 反应截面较低,使得电子对谱仪的计数率偏低; 而高能量 γ 射线电子对效应的反应截面较高, 因此电子对谱仪的计数率较高。因此,对于能 量较高的 γ 射线的测量,电子对谱仪的优势更 明显。

图 9 LaBr₃ 探测器与电子对谱仪的计数率比 Fig. 9 Ratio of count rate between electron-pair spectrometer and LaBr₃ detector

图 10 为 LaBr₃ 探测器和电子对谱仪测量 ⁵⁶Co源能谱中特征峰的净计数与总计数的比, 可看出,电子对谱仪所测能谱中的特征峰周围 连续本底较少,净计数与总计数的比接近 1,只 有在测量 1 771.4 keV 特征峰的净计数与总计 数之比时,电子对谱仪所测结果与 LaBr₃ 探测

所测能谱中峰的净计数与总计数之比
Fig. 10 Ratio of net count to total count of peak in energy spectrum measured by electron-pair spectrometer and LaBr₃ detector

器相当;这是由于在较低能量时峰周围出现了 连续本底,其产生原因是低能γ射线电子对效 应的反应截面低,造成该能量段双逃逸峰的计 数偏少,而且该能量段会受天然⁴⁰K特征峰的微 弱双逃逸峰的影响。相比而言,LaBr₃探测器只 有测量⁵⁶Co最高能量(3253.5 keV)的特征γ射 线时,峰周围连续本底才会较低。因此,电子对 谱仪在测量复杂本底或多峰的高能γ射线能谱 时,具有绝对优势,可有效避免峰周围连续本底 的影响,使测量结果更为准确。

5 结论

本文基于小体积 LaBra 探测器和自主研制 的大体积 Nal 探测器研制了一套用于测量高 能γ射线的电子对谱仪。在电子对谱仪的本底 测量中并未出现明显的符合峰。使用⁵⁶Co放射 源分别对 LaBra 探测器及电子对谱仪进行了测 试。结果表明,电子对谱仪探测到了⁵⁶Co能量 大于 1.5 MeV 的 γ 射线双逃逸峰能谱,电子对 谱仪测量 2 598.5 keV 高能量 γ 射线时的计数 率较测量1771.4 keV 高能量γ射线时提高约 26 倍,表明电子对谱仪在测量高能 γ 射线时有 较大优势;电子对谱仪测量 2 598.5 keV 及更 高能量γ射线时,峰周围连续本底几乎为0,测 量 2 034.9 keV γ 射线时,峰周围连续本底较 LaBr₃探测器测量的峰周围连续本底小5倍。 这套谱仪测量 1.5~4 MeV 能量范围内的 γ 射 线,可得到更简单的能谱,使得读出的峰计数可 更加精确,本工作为准确测量加速器共振核反 应(p,γ)及 LCS 产生的高能 γ 射线奠定了技术 基础。

感谢北京师范大学核科学与技术学院 苏俊、中国原子能科学研究院核物理研究所的 颜胜权、陈雄军、谌阳平和韩治宇在电子学和探 测器方面的帮助,感谢党永乐和付光永在探测 器研制和探测器模拟方面的帮助。

参考文献:

 [1] 王乃彦.激光与核——超高强度激光在核科学 技术中的应用[J].原子能科学技术,2019,53 (10):1 989-1 998.

WANG Naiyan. Lasers and nuclei: Applications

of ultrahigh intensity laser in nuclear science and technology[J]. Atomic Energy Science and Technology, 2019, 53(10): 1 989-1 998(in Chinese).

- [2] HAYAKAWA T. Photo-nuclear astrophysics new SUBARU γ-ray source[C]. Osaka: American Institute of Physics, 2010.
- [3] OHGAKI H. The science of nuclear materials detection using gamma-ray beams: Nuclear resonance fluorescence[C]. Hawaii: APS Division, 2014.
- [4] DANG Y L, LIU F L, FU G Y, et al. Measurement of thick target yield for narrow resonance at E_x=9.17 MeV in the ¹³C(p,γ)¹⁴N reaction[J]. Chinese Physics B, 2019, 28(6): 131-134.
- [5] WELLER H R, AHMED M W. The HIγS facility: A free-electron laser generated gamma-ray beam for research in nuclear physics[J]. Modern Physics Letters A, 2003, 18(23): 1 569-1 590.
- [6] PAN Q, XU W, CHEN J, et al. Shanghai laser electron gamma source (SLEGS) [J]. Nuclear Physics Review, 2008, 25(2): 129-134.
- [7] 党永乐. 高能伽马射线产生及其应用的研究 [D]. 北京:北京师范大学核科学与技术学院, 2019.
- [8] FALLIN B, AHMED M W, PERDUE B, et al. Absolute flux measurement at HIGS using Compton backscattering[C]. Tucson: APS Division, 2003.
- [9] 李祖豪,陈国明,陈刚,等. 用最小电离的质子刻 度铅-闪烁光纤夹层电磁量能器[J]. 高能物理与 核物理,2004,28(5):521-525.

LI Zuhao, CHEN Guoming, CHEN Gang, et al. Calibration of lead-scintillated fiber electromagnetic calorimeter using proton MIP[J]. High Energy Physics and Nuclear Physics, 2004, 28 (5): 521-525(in Chinese).

[10] SIEGBAHN K, JOHANSSON S. An electron

pair spectrometer of lens type for hard gammaradiation[J]. Review of Scientific Instruments, 1950, 21(5): 442-445.

- [11] GOLUBNICHIY P I, KURDADZE L M, NIKO-LENKO D M, et al. High-efficient pair magnetic spectrometer[J]. Nuclear Instruments and Methods, 1969, 67(1): 22-28.
- [12] 吴治华,赵国庆,陆福全,等. 原子核物理实验方 法[M]. 北京:原子能出版社,1981.
- [13] TAVENDALE A J. Semiconductor lithium-ion drift diodes as high-resolution gamma-ray pair spectrometers[J]. IEEE Transactions on Nuclear Science, 1964, 11(3): 191-200.
- [14] EWAN G T, TAVENDALE A J. Application of high resolution lithium-drift germanium gammaray spectrometers to high energy gamma-rays
 [J]. Nuclear Instruments and Methods, 1964, 26: 183-186.
- [15] AUBLE R L, BEERY D B, BERZINS G, et al. Coincidence-anticoincidence gamma-ray spectroscopy with a NaI(TI) split annulus and a Ge(Li) detector[J]. Nuclear Instruments and Methods, 1967, 51(1-2): 71-91.
- [16] 孔祥忠. 塑料闪烁体-高纯锗三晶电子对谱仪
 [J]. 分析测试技术与仪器,1994(1):7-11.
 KONG Xiangzhong. Plastic high purity Ge three crystal electron-pair spectrometer[J]. Analysis and Testing Technology and Instruments, 1994 (1): 7-11(in Chinese).
- [17] PAGES L, BERTEL E, JOFFRE H, et al. Energy loss, range, and bremsstrahlung yield for 10 keV to 100 MeV electrons in various elements and chemical compounds [J]. Atomic Data and Nuclear Data Tables, 1972, 4: 1-27.
- [18] 跨田敏一,久米英浩,冈野和芳,等.光电倍增管 基础与应用[M].静冈:滨松光子学株式会社, 2005.