LN 函数核截面隐式敏感性系数计算方法

胡 馗,马续波*,张 辰,刘 莎,陈义学

(华北电力大学 核科学与工程学院,北京 102206)

摘要:许多新型反应堆由于能谱较硬,核数据引起的不确定度已成为反应堆物理设计主要不确定度的来源。之前针对快能谱反应堆的不确定度分析主要集中在显式敏感性系数计算及不确定度分析,对隐式效应的分析较少,很少对隐式效应的影响给出分析。本文在深入研究反应堆截面处理方法的基础上,提出了一种新的基于本底截面迭代方法的截面隐式敏感性效应分析方法,由于该截面隐式敏感性系数计算主要与 LN 函数相关,因此也称为 LN 函数隐式敏感性计算方法。并利用基准题对新方法计算的截面隐式效应进行了分析,证明了方法的正确性。针对提出的五核素快谱基准题,采用多群截面计算,在 共振自屏效应强烈的能群,部分核截面敏感性系数隐式效应修正最大可达 50%,针对少群截面,对于大 多数反应道,考虑隐式效应后计算得到的 keff 相对敏感性系数和不确定度计算精度均有明显提高,但有 部分反应道可能是由于 Bondarenko 方法和窄共振近似本身问题,导致敏感性系数和不确定度精度改善不明显。

关键词:反应堆;隐式敏感性系数;敏感性系数计算;不确定度

中图分类号:TL392 文献标志码:A 文章编号:1000-6931(2024)03-0645-09 doi:10.7538/yzk.2023.youxian.0513

Calculation Method of LN Function Cross-section Implicit Sensitivity Coefficient

HU Kui, MA Xubo^{*}, ZHANG Chen, LIU Sha, CHEN Yixue (School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China)

Abstract: For many new reactors, the uncertainty caused by nuclear data has become the main source of uncertainty in reactor physics design due to the higher uncertainty of measurement cross-section in the high energy region. Previously, uncertainty analysis for fast spectrum reactors mainly focused on explicit sensitivity coefficient calculation and uncertainty analysis, with less analysis of implicit effects and little analysis of the magnitude of their impact. The implicit effect of sensitivity coefficient is related to the processing method of resonance self-shielding cross-section, and due to the complexity of resonance self-shielding calculation, the implicit effect of sensitivity coefficient also becomes more complex. For example, for the problem of pressurized water reactors,

基金项目:国家自然科学基金(11875128)

implicit effects can be considered by solving the continuous energy spectrum slowing equation or changing the effective resonance integral table in the library. For thermal reactors, due to the need for neutron moderation to pass through the intermediate energy region with strong resonance self-shielding effect, the implicit sensitivity effect is relatively significant. When calculating the sensitivity coefficient, the implicit effect needs to be considered. For fast spectrum reactors (fast reactors), although the implicit effect is not very significant in theory, there has been no good method for calculating the implicit effect of sensitivity coefficients. The resonance self-shielding processing method based on background cross-section iteration is widely used in many reactor physics programs. A new implicit sensitivity effect analysis method based on the Bondarenko background cross-section iteration method was proposed in this study. The LN function was used to interpolate the background cross-section to represent the influence of crosssection disturbance on neutron spectra, and the influence was transmitted to the explicit sensitivity coefficient, thereby obtaining the sensitivity coefficient considering the implicit effect. Due to the fact that the implicit sensitivity coefficient of the cross-section is mainly related to the LN function, it is called as the LN function implicit sensitivity calculation method (LNIS method). A simple fast energy spectrum benchmark problem was proposed for the above method, and the implicit effect of the cross-section calculated by the new method was analyzed using the benchmark problem, proving the correctness of the method by comparison with the results of MCNP. For the proposed fast spectral benchmark problem, multi-group cross-section calculation was used. In the energy group with strong resonance self-shielding effect, the implicit effect correction of some nuclear cross-section sensitivity coefficients can reach a maximum of 50%. For the few-group cross-section, for most reaction channels, the accuracy of the $k_{\rm eff}$ relative sensitivity coefficient and uncertainty calculation after considering the implicit effect was significantly improved, but there were some reaction channels. Perhaps due to issues with Bondarenko and narrow resonance approximation itself, the improvement in sensitivity coefficient and uncertainty accuracy is not significant.

Key words: reactor; implicit sensitivity coefficient; sensitivity coefficient calculation; uncertainty

伴随核能的发展,新的反应堆堆型被不断 提出,这些堆型包括铅基快堆、热管堆、空间堆 以及混合谱反应堆等。新型反应堆由于工程实 践有限及系统自身的反应堆物理特点,导致反 应堆物理计算存在较大不确定度。这些物理特 点主要指中子能谱较硬,中子主要集中在中高 能区,而在中高能区的截面测量误差相对较大, 由此导致系统的有效增殖因数的不确定度主要 来自于核截面^[1]。研究核截面引起的反应堆物 理计算的不确定度方法对新型反应堆的设计具 有重要意义。

针对核数据引起的反应堆物理计算的不

确定度大小,国内外也进行了大量研究,也包括基于最新评价核数据的验证^[2],开发了大量的程序,这些程序包括TSUNAMI-1D/3D、SUFR、SCALE-SS、DINOSAUR、MCNP、SURE、UNICORN^[3-10]等。敏感性系数的隐式效应与 共振自屏截面的处理方法相关,而由于共振自 屏计算往往复杂,由此也导致敏感性系数的隐 式效应也变得比较复杂。比如针对压水堆问题,可以采用求解连续能谱慢化方程或者改变 有效共振积分表的方法考虑隐式效应^[11]。针 对热堆,由于中子慢化需要经过共振自屏效应 强烈的中能区,隐式敏感性效应比较显著,在计 算敏感性系数的时候,需要考虑隐式效应。而 对于快能谱反应堆(快堆),虽然从理论上讲,隐 式效应不是很显著^[11],但一直没有很好的方法 进行敏感性系数的隐式效应的计算。基于本底 截面迭代的共振自屏处理方法在很多反应堆物 理程序中都有广泛应用^[12],本文针对该共振自 屏处理方法提出一种新的隐式敏感性系数计算 方法,该方法只需要根据本底截面计算结果就 可以计算得到隐式敏感性系数。在此基础上, 采用基准题对提出的隐式敏感性系数计算方法 进行验证,对比 MCNP 的计算结果。

1 隐式敏感性系数计算理论

快能谱反应堆截面制作方法有多种,其中 一种为利用连续点截面考虑共振自屏制作得到 多群截面,然后利用多群截面进行组件或棒栅 元计算,考虑几何效应及能谱泄漏影响计算得 到多群中子通量密度和中子通量密度矩,或直 接进行连续点截面计算中子通量密度或通量 矩,然后进行并群得到少群截面,最后进行少群 截面的堆芯计算。堆芯计算的响应量相对于少 群截面的敏感性系数在之前的相关文献中进行 了详细研究^[4],但针对组件计算的敏感性系数 引入的隐式敏感性则很少,且没有多群相对于 连续点截面的相对敏感性系数的计算理论。本 文把响应量相对于连续点截面的敏感性系数分 为两个部分,分别是多群截面相对于连续点截 面的敏感性系数 S_{a_a}(E) 和响应量相对于多群截 面的敏感性系数 $S_{R,a}$,总的敏感性系数 $S_{R,a(E)}$ 计算式为:

 $S_{R,\sigma(E)} = S_{R,\sigma_g} S_{\sigma_g,\sigma(E)}$ (1) 其中: σ_g 为每个能群的平均截面; $\sigma(E)$ 为连续 能量点截面。

由于隐式敏感性系数计算与共振自屏截面 计算相关,首先讨论多群截面相对于连续点截 面的相对敏感性系数。根据反应率守恒,多群 截面的计算公式为:

$$\sigma_{x,g}(T) = \frac{\int_{\Delta E_g} \sigma_x(E,T)\phi(E) dE}{\int_{\Delta E_g} \phi(E) dE}$$
(2)

其中:σ_{x,g}(T)为温度为 T 的第 g 能群的反应类 型为 x(x 可能是裂变、辐射俘获、弹性散射等)

$$\sigma'_{x}(E,T) = (1 + \delta_{x,g})\sigma_{x}(E,T)$$

$$E_{g} \leqslant E \leqslant E_{g-1} \qquad (3)$$

$$\sigma'_{x,g}(T) = \frac{\int_{\Delta E_{g}} \sigma'_{x}(E,T)\phi(E) dE}{\int_{\Delta E_{g}} \phi(E) dE} = (1 + \delta_{x,g})\sigma_{x,g}(T) \qquad (4)$$

其中: $\delta_{x,g}$ 为群截面的扰动量,一般为 1%^[11]; ΔE_g 为g能群的能群宽度。由于温度在共振 自屏处理前已处理完成,为叙述方便,下面的公 式推导均在给定温度下进行,不再标温度 T。 由式(5)可见,相当于直接对超细群截面的每个 能群做扰动。如果对于共振核素,在窄共振近 似下,中子能谱可表示为:

$$\phi(E,\sigma_0) = \frac{\sigma_p^{\rm r} + \sigma_0}{\sigma_{\rm t}(E) + \sigma_0} \phi(E) \tag{5}$$

其中: σ_0 为本底截面; σ_0^c 为核素的势散射截面; $\sigma_1(E)$ 为核素总截面; $\phi(E)$ 为随能量缓慢变化 的能谱。通过本底截面 σ_0 调节核素共振自屏 的强弱, σ_0 越小说明共振自屏效应越显著,而 越大表明共振自屏效应越不显著。由于某一能 群截面扰动会导致连续中子能谱发生变化,该 变化可转化为本底截面的变化,如式(6)所示。

$$\sigma'_{x,g}(\sigma_0) = \frac{\int_{\Delta E_g} \sigma'_x(E) \phi'(E,\sigma_0) dE}{\int_{\Delta E_g} \phi'(E,\sigma_0) dE} = (1+\delta_{x,g}) \sigma_{x,g}(\sigma'_0)$$
$$\sigma'_0 = \frac{\sigma_0}{1+\delta_{x,g}}$$
(6)

其中, $\delta_{t,g}$ 为由于 x 截面的扰动而造成总截面的 扰动量。截面随本底截面的变化规律类似于 LN 函数^[13],如采用 LN 函数对本底截面进行 插值,则为:

$$\sigma_{x,g}(\sigma_0) = \frac{\sigma_{t,g}(\sigma_2) - \sigma_{t,g}(\sigma_1)}{\ln \sigma_2 - \ln \sigma_1} (\ln \sigma_0 - \ln \sigma_1) + \sigma_{x,g}(\sigma_1) = A_g \ln \sigma_0 + B_g$$
(7)

 $\ddagger \psi, A_{g} = \frac{\sigma_{t,g}(\sigma_{2}) - \sigma_{t,g}(\sigma_{1})}{\ln \sigma_{2} - \ln \sigma_{1}}, B_{g} = \sigma_{x,g}(\sigma_{1}) -$

 $A_{g} \ln \sigma_{1}$.

$$\frac{\sigma_{x,g}'(\sigma_0)}{\sigma_{x,g}(\sigma_0)} = (1 + \delta_{x,g}) \frac{\sigma_{x,g}(\sigma_0')}{\sigma_{x,g}(\sigma_0)} = (1 + \delta_{x,g}) \left(1 - A_g \frac{\ln(1 + \delta_{t,g})}{\sigma_{x,g}(\sigma_0)}\right)$$
(8)

由于正扰动和负扰动计算超细群截面相对 于连续点截面的隐式敏感性系数 S_{eve}(E)为:

$$S_{\sigma_{g},\sigma^{(E)}} = \frac{\sigma_{x,g}^{\mathbb{E}\mathfrak{K}\mathfrak{B}}(\sigma_{0}) - \sigma_{x,g}^{\mathfrak{H}\mathfrak{K}\mathfrak{B}}(\sigma_{0})}{\sigma_{x,g}(T,\sigma_{0})} \frac{1}{2\delta_{x,g}} = \frac{1}{2\delta_{x,g}} \Big((1+\delta_{x,g}) \Big(1-A_{g} \frac{\ln(1+\delta_{t,g})}{\sigma_{x,g}(T,\sigma_{0})} \Big) - (1-\delta_{x,g}) \Big(1-A_{g} \frac{\ln(1-\delta_{t,g})}{\sigma_{x,g}(T,\sigma_{0})} \Big) \Big) = \frac{1}{2\delta_{x,g}} \Big(2\delta_{x,g} + \frac{A_{g}}{\sigma_{x,g}} \ln \frac{1-\delta_{t,g}}{1+\delta_{t,g}} - \delta_{x,g} \frac{A_{g}}{\sigma_{x,g}} \ln(1-\delta_{t,g}^{2}) \Big) \approx \frac{1}{2\delta_{x,g}} \Big(2\delta_{x,g} + \frac{A_{g}}{\sigma_{x,g}} \ln \frac{1-\delta_{t,g}}{1+\delta_{t,g}} \Big) = 1 + \frac{1}{2\delta_{x,g}} \frac{A_{g}}{\sigma_{x,g}} \ln \frac{1-\delta_{t,g}}{1+\delta_{t,g}} = 1 + C_{g} \quad (9)$$

$$C_{g} = \frac{1}{2\delta_{x,g}} \frac{A_{g}}{\sigma_{x,g}} \ln \frac{1 - \delta_{t,g}}{1 + \delta_{t,g}}$$
(10)

其中,C。为由连续点截面到超细群截面引起的 敏感性系数的变化项,该项中的 A_g 和 $\sigma_{x,g}(T,$ σ_0)可在本底截面迭代时计算得到。式(9)的物 理意义为:当系统中的某个核素的截面发生变 化时会引起系统的总截面发生变化,进而引起 系统的中子能谱发生变化,该能谱的变化可等 效为本底截面的变化。若 C_g 趋近于零时,则 表示由于某核素的截面变化对能谱的变化影响 可忽略;若C。偏离零较远,则说明能谱变化的 影响较大。这项属于从连续点截面到超细群 截面的过程中出现的隐式敏感性。在式(9)的 推导中,忽略了项 $\delta_{x,g} \frac{A_g}{\sigma_{x,g}} \ln(1-\delta_{x,g}^2)$,是因为由 于 $\delta_{x,g}$ 很小, ln(1- $\delta_{x,g}^2$)几乎为零,因此可忽 略。若 $\delta_{x,g}$ 取1.0%,则总截面的扰动量 $\delta_{t,g}$ 也 不大,这种情况下 C_g 近似等于 A_g 的负值。 因为隐式效应主要通过 LN 函数进行计算,也 称本方法为 LN 函数隐式敏感性计算方法。

2 计算流程

利用式(9)、(10)进行敏感性系数和不确定 度计算的流程如图1所示。由图1可见,多群 截面的相对于连续点截面的敏感性系数可根据 本底截面的计算结果给出,然后再与扰动多群 截面得到的敏感性系数一起,即可计算得到总 的敏感性系数。在不确定度分析程序 SUFR 中增加了对多群截面扰动功能,扰动后的截面 再用 MGGC2.0 中一致性 *P_N* 方法或其他堆芯 程序计算系统的有效增殖因数。另外在截面处 理程序中增加了计算隐式敏感性系数中 *C_g* 参 数的模块,通过此模块计算多群截面相对于连 续点截面的敏感性系数。

3 计算结果

为计算隐式敏感性,采用一无限大基准题 模型,基准题模型中仅包括了对快能谱反应堆不 确定度分析具有重要影响的6种核素(表1)。 计算软件采用了截面处理软件 MGGC2.0^[14-15] 或堆芯计算软件。MGGC2.0程序是一款专门 为快谱或混合谱反应堆制作少群截面的软件, 通过求解超细群的输运方程计算中子通量密度 和中子通量密度矩,然后进行并群得到少群截 面。MGGC2.0中采用了求解一致性 P_N 方程加 上临界搜索的方法求解反应堆堆芯中子能谱,利 用本底截面迭代的方法求解有效自屏截面。

表 1 基准题核子密度 Table 1 Atomic density of isotopes in benchmark

核素	核子密度/10 ⁻²⁴ cm ³
²³⁵ U	1.260 655×10^{-5}
²³⁸ U	5.792 90 $\times 10^{-3}$
²³⁹ Pu	8.865 21×10^{-4}
²³⁸ Pu	3.330 12×10^{-7}
$^{56}\mathrm{Fe}$	1.179 62×10^{-2}
²³ Na	9.277 52 \times 10 ⁻³

3.1 多群截面隐式敏感性系数

共振自屏效应是反应物理计算中的重点, NJOY2016 在制作多群截面时,采用了随温度 和本底截面σ₀ 变化的截面。使用时,可采用各 种方法求解与几何和核素相关的本底截面σ₀, 然后再去之前的截面本底网格中插值得到问题 相关的有效自屏截面。在敏感性分析中,由于 某核素截面发生变化,导致中子能谱发生变化, 进而引起敏感性系数发生变化称为隐式敏感 性。本文把能谱变化与本底截面σ₀ 联系起来, 进而计算截面隐式敏感性。具体实施步骤为: 首先利用 NJOY2016 程序制作了超细群(2 082

和相对于连续点截面的敏感性系数 *S_{x,g}* Fig. 2 Effective self-shielding cross-section of ²³⁹ Pu and its sensitivity coefficient respect to continue cross-sections *S_{x,g}* 能群)的 MATXS 格式多群截面,多群截面随 温度和本底截面变化,温度选取了 300、600、 900、1 200、1 500、1 800、2 100 K共7个温度点, 本底截面选取 1.0×10^{10} 、 1.0×10^{7} 、 1.0×10^{5} 、 1.0×10^{4} 、 1.0×10^{3} 、 1.0×10^{2} 、10、 $1.0 \times 5.0 \times 10^{-1}$ 、 1.0×10^{-1} b,共10个本底截面迭代,计算式 (10)中的 A_{g} 和 $\sigma_{x,g}(T,\sigma_{0})$,然后利用式(9)可计 算得到核素每个反应道的每个超细群的敏感性 系数。图 2~5分别给出了²³⁹Pu、²³⁸U、⁵⁶Fe和 ²³Na的超细群有效共振自屏截面和相应的每个 反应道每个能群截面的相对敏感性系数 $S_{x,g}$ 。

图 4 ⁵⁶ Fe 核素有效共振自屏截面 和相对于连续点截面的敏感性系数 $S_{x,g}$ Fig. 4 Effective self-shielding cross-section of ⁵⁶ Fe and its sensitivity coefficient respect to continue cross-sections $S_{x,g}$

图 5 ²³ Na 核素有效共振自屏截面 和相对于连续点截面的敏感性系数 *S_{x,g}* Fig. 5 Effective self-shielding cross-section of ²³ Na and its sensitivity coefficient respect to continue cross-sections *S_{x,g}*

由图 2 可见,在没有共振的能量区间,每个 能群截面的相对敏感性系数等于 1.0。在共振 峰密集的能群区间,每个能群截面的相对敏感 性系数 S_{r.e}均在 1.0 附近,能群截面的相对敏 感性系数均明显小于1,最大的可到0.7。由于 能群截面的相对敏感性系数在共振的能区明显 小于1,这样将会使得考虑隐式敏感性系数后, 响应量相对于超细群的敏感性系数会减小。由 干每个核素的共振能区的位置不一样,每个超 细群相对敏感性变化明显的能区也有明显差 别,如²³⁹Pu和²³⁸U变化较明显的能区在10~ 10 000 eV,但⁵⁶Fe的变化较明显的能区为 10⁴~ 107 eV,主要是因为56 Fe的共振峰集中在这个能 量区间。但对于²³Na,在共振能区,能群截面的 相对敏感性系数较56Fe要更接近 1.0。由于是超 细群能群结构,²³ Na 的共振峰均能很好地被描 述,在超细群的共振峰内部,共振自屏效应较弱。 这也说明,共振自屏的强弱跟能群结构也有很大 关系,如果能群宽度越宽,每个能群中包括的共 振峰数目越多,则该能群的共振自屏效应越强。

3.2 考虑隐式效应的 keff 敏感性系数

前面计算得到每个核素每个反应道每个能 群的相对敏感性系数可应用于任何响应量。为 验证前面计算的每个能群截面的相对敏感性系 数的正确性,选用有限增殖因数作为响应量,计 算 k_{eff}相对于多群以及少群截面的相对敏感性 系数,采用了 MCNP 连续点截面计算的结果作 为基准。MCNP 程序计算基于 ENDF/B-W.1, 每代粒子数为100 000个,粒子代数为 400 代, 舍掉前 100 代。

不考虑隐式效应的 k_{eff} 相对敏感性系数计 算方法:利用 NJOY 程序制作得到多群 MATXS 格式数据库,采用 MGGC2.0 通过本底截面迭 代计算得到各个核素的不同反应道的有效自屏 截面,然后利用 SUFR 程序对每个多群分别进 行正负扰动,然后再利用 MGGC2.0 或堆芯计 算程序做输运计算,得到系统的 k_{eff} 相对于每个 核素每个细群的相对敏感性系数 S_{R,σ_g} 。利用 响应量相对于每个细群的相对敏感性系数 S_{R,σ_g} 。利用 或量相对于每个细群的相对敏感性系数 S_{R,σ_g} 。利用 考虑隐式效应的细群的敏感性系数。考虑隐式 效应和不考虑隐式效应两种情况的少群敏感性 系数计算公式分别为式(11)、(12)。

$$S_{\mathrm{R},\sigma_{G}}^{\pi \sharp \& \mathbb{R} \ddagger} = \sum_{g \in G} S_{\mathrm{R},\sigma_{g}}$$
(11)
$$S_{\mathrm{R},\sigma_{G}}^{\sharp \& \mathbb{R} \ddagger \bigstar \& \mathbb{R} \atop g \in G} S_{\mathrm{R},\sigma(E)} = \sum_{g \in G} S_{\mathrm{R},\sigma_{g}} \cdot S_{\sigma_{g},\sigma(E)}$$

(12)

图 6~10 分别给出了²³⁸U辐射俘获、²³⁹Pu 裂变、²³⁹Pu辐射俘获、⁵⁶Fe辐射俘获和²³Na辐射 俘获反应道少群截面 k_{eff} 的相对敏感性系数。 由图 6~10 可见,考虑隐式效应的细群的相对 敏感性系数与不考虑隐式效应的细群的相对敏 感性系数随能量的变化趋势与 MCNP 的计算 结果吻合较好,细群相对于连续点截面的相对 敏感性系数 $S_{\sigma_{e},\sigma(E)}$ 对细群相对于 k_{eff} 的相对敏

图 6 ²³⁸ U 辐射俘获反应道少群 k_{eff}的相对敏感性系数 Fig. 6 Relative sensitivity coefficients of k_{eff} of ²³⁸ U capture

感性系数起到了修正的作用。这种修正作用对 于不同核素,作用的能群位置和大小也会有所 变化。为更清楚表示隐式效应的修正作用,表 2给出了少群截面相对于 k_{eff}的总敏感性系数 对比。由表 2 可见,除²³⁹Pu裂变反应道,考虑 隐式敏感性系数后的结果与 MCNP 吻合更好, 少群截面相对于 k_{eff}的总敏感性系数均有明显 改进。对于²³⁹Pu裂变反应道,由图7可见,不

图 7 ²³⁹ Pu 裂变反应道少群 k_{eff}的相对敏感性系数 Fig. 7 Relative sensitivity coefficients of k_{eff} of ²³⁹ Pu fission

图 8 ²³⁹ Pu 辐射俘获反应道少群 k_{eff}的相对敏感性系数 Fig. 8 Relative sensitivity coefficients of k_{eff} of ²³⁹ Pu capture 考虑隐式效应的敏感性系数本身均较 MCNP 计算结果偏低,而隐式效应的修正进一步使原 来的敏感性系数更低,所以相比于 MCNP 的结 果偏离方向与其他计算结果稍有不同,该偏 离方向可能跟不同反应道的共振自屏效应不 同,而 Bondarenko 本底截面方法中只对总截 面迭代,由此可能造成不精确,有待进一步研 究分析。

图 9 ⁵⁶Fe 辐射俘获反应道少群 k_{eff}的相对敏感性系数 Fig. 9 Relative sensitivity coefficients of k_{eff} of ⁵⁶Fe capture

图 10 ²³ Na 辐射俘获反应道少群 k_{eff}的相对敏感性系数 Fig. 10 Relative sensitivity coefficients of k_{eff} of ²³ Na capture

表 2 少群截面相对于 k_{eff}的总的敏感性系数对比

Table 2 Comparison of total sensitivity coefficients respect to k_{eff} for different isotopes

核素及反应道 -		敏感性系数		不考虑隐式效应	考虑隐式效应
	不考虑隐式效应	考虑隐式效应	MCNP	相对偏差/%	相对偏差/%
²³⁹ Pu 裂变	5.385 $\times 10^{-1}$	5.368 $\times 10^{-1}$	5.449 $\times 10^{-1}$	-1.17	-1.49
²³⁹ Pu 辐射俘获	-6.050×10^{-2}	-6.013×10^{-2}	-5.724×10^{-2}	5.70	5.05
²³⁸ U辐射俘获	-2.638×10^{-1}	-2.585×10^{-1}	-2.578×10^{-1}	2.33	0.27
56Fe辐射俘获	-1.445×10^{-2}	-1.369×10^{-2}	$-1.396 imes 10^{-2}$	3.51	-1.91
²³ Na 辐射俘获	-1.593×10^{-3}	-1.535×10^{-3}	-1.465×10^{-3}	8.74	4.78

3.3 不确定度计算

利用少群的敏感性系数计算上述反应道的 k_{eff} 的不确定度大小,对比考虑隐式敏感性与不 考虑隐式敏感性的差别。不确定度的计算方 法:将并群得到的考虑隐式敏感性和不考虑隐 式敏感性的相对敏感性系数,利用式(13)计算 得到 k_{eff} 响应量的不确定度,比较结果以MCNP 为基准。本模拟中采用了每代10 000个例子, 活跃带为 300 代,非活跃带为 100 代, k_{eff} = 1.465 08,统计误差为0.000 23。

$$(U_{\mathrm{R}}^{\mathrm{r}})^{2} = \boldsymbol{S}_{\mathrm{R},\mathrm{X}}^{\mathrm{r}} \boldsymbol{C}_{\mathrm{X},\mathrm{X}}^{\mathrm{r}} (\boldsymbol{S}_{\mathrm{R},\mathrm{X}}^{\mathrm{r}})^{\mathrm{T}}$$
(13)

其中:U_R 为响应量的不确定度;S_{R,x} 为响应量 相对敏感性系数矩阵;C_{x,x} 为核数据相对协方 差矩阵;(S_{R,x})^T 为相对敏感性系数的转置矩 阵。考虑隐式敏感性效应与不考虑隐式敏感性 效应计算的不同核素及反应道的不确定度结果 列于表 3。由表 3 可见,考虑隐式效应后,k_{eff}的 不确定度计算精度有了明显提高。²³⁹ Pu裂变 反应道由于敏感性系数相对于 MCNP 结果有 偏离,考虑隐式效应后的不确定度结果较不考 虑隐式效应略偏大,与总敏感性系数的变化趋 势一致。

表 3 不同反应道相对于	k _{eff} 的不确定度
--------------	------------------------

Table	e 3 (Comparison	of total	uncertainty	of k_{eff}	for di	fferent	isotopes	

核素及反应道 -		不确定度	不考虑隐式效应	考虑隐式效应	
	不考虑隐式效应	考虑隐式效应	MCNP	相对偏差/%	相对偏差/%
²³⁹ Pu 裂变	2.395×10 ⁻³	2.355 $\times 10^{-3}$	2.358×10 ⁻³	1.57	-0.13
²³⁹ Pu 辐射俘获	3.633 $\times 10^{-3}$	3.796 $\times 10^{-3}$	3.800×10^{-3}	-4.39	-0.11
²³⁸ U辐射俘获	3. 274×10^{-3}	3. 196×10^{-3}	3.194×10^{-3}	2.50	0.06
⁵⁶ Fe辐射俘获	1.072×10^{-3}	1.015×10^{-3}	1.088×10^{-3}	-1.47	-6.71
²³ Na 辐射俘获	1.497 $\times 10^{-4}$	1.460×10^{-4}	1.411×10^{-4}	6.09	3.47

4 结论

为更精确计算核截面数据引起的反应堆物 理计算结果的不确定度,提出了一种新的隐式 敏感性系数计算方法。利用该方法可计算多群 截面相对于连续点截面的敏感性系数,进而考 虑截面的隐式效应。并通过基准题对本文提出 的隐式效应敏感性系数计算方法进行验证,采 用 MCNP 计算结果作为基准解,分析响应量 k_{eff}的计算结果,²³⁸U辐射俘获、²³⁹Pu辐射俘获、 ⁵⁶Fe辐射俘获和²³Na辐射俘获反应道的结果显 示:考虑隐式效应的多群的相对敏感性系数与 不考虑隐式效应的细群的相对敏感性系数随能 量的变化趋势跟 MCNP 的计算结果基本一致, 可显著改善相对敏感性系数的计算精度。采用 多群截面计算,在共振自屏效应强烈的能群,隐 式效应修正最大可达 50%。针对少能群截面, 考虑隐式效应与不考虑隐式效应计算得到的 k_{eff}总相对敏感性系数和不确定度均有明显提 升。以上计算结果说明了本文提出的隐式敏感 性系数计算方法的可行性。

针对²³⁹Pu裂变反应,改进不明显可能跟 Bondarenko本底截面迭代处理共振自屏方法 本身有关。在 Bondarenko 方法中,为考虑共振 自屏对中子能谱的影响,需根据实际核素成分 和几何计算出本底截面,然后再去总截面网格 中插值进行本底截面迭代,一直到总截面收敛。 该方法的明显缺点是,不同反应道的共振自屏 可能不一样,传统的 Bondarenko 本底截面只对 总截面做迭代,而不对其他反应道处理,这样就 有可能导致利用总截面迭代出来的共振自屏因 子对应用于其他反应道时,可能会造成一定偏 差。但通过总截面的本底截面迭代虽不能对所 有核素所有反应道均能较好考虑共振自屏,但 对大多数核素的主要反应道,计算结果有所改 善。若要精确计算,将来需进行连续点截面才 能更好考虑共振自屏效应和灵敏度系数的隐式 效应。

参考文献:

[1] 张坚,喻宏,胡赟,等. CEFR 首炉堆芯核设计计 算不确定度分析[J]. 原子能科学技术,2019, 53(2):200-208.

ZHANG Jian, YU Hong, HU Yun, et al. Uncertainty analysis on nuclear design calculation of the first loading core of CEFR[J]. Atomic Energy Science and Technology, 2019, 53(2): 200-208(in Chinese).

- [2] ZHANG B, MA X B, HU K, et al. Performance of the CENDL-3. 2 and other major neutron data libraries for criticality calculations[J]. Nucl Sci Tech, 2022, https: // doi. org/10. 1007/ s41365-022-00994-3.
- [3] REARDEN B T. TSUNAMI-3D: Control module for three-dimensional cross-section sensitivity and uncertainty analysis for criticality[R]. USA: Oak Ridge National Laboratory, 2009.
- [4] MA Xubo, HUANG Yuqin, QU Wu, et al. Uncertainty comparison between ENDF/B-W. 0 and ENDF/B-W. 1 for fast reactor BN-600 using high-precision sampling method[J]. Annals of Nuclear Energy, 2021, 161: 108457.
- [5] 朱润泽,马续波,王冬勇,等. 面向协方差矩阵抽 样的快堆不确定性分析方法研究[J]. 核动力工 程,2021,42(5):81-85(in Chinese).
 ZHU Runze, MA Xubo, WANG Dongyong, et al. Study on uncertainty analysis method of fast

reactor basedon covariance matrix sampling[J]. Nuclear Power Energineering, 2021, 42(5): 81-85(in Chinese).

- [6] BALL M R. Uncertainty analysis in lattice reactor physics calculations[D]. Canada: McMaster University, 2011.
- [7] ROCHMAN D, KONING A J, van der MARCK S C, et al. Nuclear data uncertainty propagation: Total Monte Carlo vs. covariances[J]. Journal of Korean Physical Society (Proceedings of International Conference on Nuclear Data for Science and Technology, ND2010), 2011, 59 (2): 1 236-1 241.
- [8] BALL M R, NOVOG D R, LUXAT J C. Analysis of implicit and explicit lattice sensitivities using DRAGON [J]. Nuclear Engineering and Design, 2013, 265: 1-12.

- [9] 胡泽华,叶涛,刘雄国,等. 抽样法与灵敏度法 k_{eff}
 不确定度量化[J]. 物理学报,2017,66(1):
 012801.
 HU Zehua, YE Tao, LIU Xiongguo, et al.
 Uncertainty quantification in the calculation of k_{eff}
 using sensitity and stochastic sampling method
 [J]. Acta Phys Sin, 2017, 66(1): 012801(in Chinese).
- [10] 万承辉,曹良志,吴宏春,等. 基于抽样方法的特 征值不确定度分析[J]. 原子能科学技术,2015, 49(11):1 954-1 960.
 WAN Chenghui, CAO Liangzhi, WU Hongchun, et al. Eigenvalue uncertainty analysis based on statistical sampling method[J]. Atomic Energy Science and Technology, 2015, 49(11): 1 954-1 960(in Chinese).
- [11] 万承辉. 核反应堆物理计算敏感性和不确定性 分析及其在程序确认中的应用研究[D]. 西安: 西安交通大学,2018.
- [12] MacFARLANE R E. Code system to produce neutron, photon, and particle transport tables for discrete-ordinates and diffusion codes from crosssections in MATXS format, PSR-3 17 TRANSX 2. 15[R]. [S. l.]: [s. n.], 1995.
- [13] Scale: A comprehensive modeling and simulation suite for nuclear safety analysis and design, ORNL/TM-2005/39[R]. US: Radiation Safety Information Computational Center at Oak Ridge National Laboratory, 2005.
- [14] 黄自锋,马续波,朱润泽,等. 快堆多群数据库处 理程序 MGGC1.0的开发和验证[J]. 核动力工 程,2021,42(3):6-13.
 HUANG Zifeng, MA Xubo, ZHU Runze, et al. Development and verification of fast reactor multi-group cross-section database processing code MGGC1.0[J]. Nuclear Power Engineering, 2021,42(3):6-13(in Chinese).
- [15] HU Kui, MA Xubo, ZHANG Teng, et al. MGGC2.0: A preprocessing code for the multigroup cross-section of the fast reactor with ultrafine group library[J]. Nuclear Engineering and Technology, 2023, 55(8): 2 785-2 796.