5844810 -SSR s S Vol. 58, No. 8
202448 H Atomic Energy Science and Technology Aug. 2024

B TR EZF S8 X 5 2 08 # 15 i 22 5R B
Bz 77 iE R

KA, MKE,FE, RAA

(PRI AR B A BR A R, 5Eh sk 014035)

R O T $5 0 R 2 20 A XS e MR A i S e 57 RS 00 A o R P, S O vRORS BE R E AR DU, AR SCHE T
YOLOX K H Ar e BT, %1% 5 56 T H AR i i R T AR /IS (R 0, X 199 24 25 4 0 458 2k eR 43R AT 1 A B 1Y
ek, IFE Tl B4 b HEAT T IG R . S5 AR A, 120k O SR AE PR Fer 0 v ) TR A [ B, RRUORG B AR AR
TR AR TE, IR B AE PRI R AT I T R A AR o JE R 48 X BT BT AR I BB R S T A
AT IER AT T TR SR ALl

SRR ORI KRARTR M5 BRBAKIN; IR~ X G4

FE 4 %S TL9Y; TP18] MEk AR SR A X E %S 1000-6931(2024)08-1767-10

doi: 10.7538/yzk.2023.youxian.0706

Detection Method of X-ray Fuel Rod End Plug Defect

Based on Deep Learning

ZHANG Xiaogang, YU Dongbao, TANG Hui, ZHU Yongli
(China North Nuclear Fuel Co., Ltd., Baotou 014035, China)

Abstract: Amidst the global expansion of nuclear power generation, ensuring the integrity of nuclear
fuel rods is crucial for the safe operation of nuclear power plants. As a vital component of fuel rods, the
detection of defects in the end plugs is a key step in ensuring nuclear safety. Traditional manual
detection methods are not only time-consuming and inefficient but also susceptible to subjective
influences. To address these issues, this study proposed an automatic detection method for defects in
fuel rod end plugs based on deep learning X-ray imaging, aiming to enhance the accuracy and efficiency
of detection. The research began by collecting a large number of X-ray images of fuel rod end plugs and
preprocessing these images, including single-rod segmentation and extraction of effective evaluation
areas, to optimize image quality. Subsequently, an improved YOLOX model was adopted as the core
detection algorithm, with adjustments made to the network structure and loss function to address the
characteristics of small target defects. The introduction of a coordinate attention module enables the
model to more accurately locate and identify tiny defects. Additionally, the CIoU loss function was
employed in place of the traditional IoU loss function to improve the model’s localization precision for
small targets. During the model training phase, data augmentation techniques such as Mosaic, Copy and

Paste, and Mixup were implemented to enhance the model’s adaptability to new scenarios. The
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experimental results demonstrate that the improved model excels in the task of end plug defect

detection, with significant enhancements in detection accuracy and speed compared to traditional

methods and unimproved deep learning models. Tests on industrial datasets show a notable increase in

the model’s mean average precision (mAP) while maintaining a fast detection speed, meeting the

requirements of actual production. The model also performs well in detecting various types of defects,

including accurate identification of porosity, swelling, incomplete welding, tungsten inclusion, and plug

abnormalities. In summary, this study successfully develops an efficient and accurate automatic

detection method for defects in fuel rod end plugs based on deep learning X-ray imaging. This method

not only improves the level of detection automation but also provides strong technical support for the

safe management and maintenance of fuel rods. Future research will continue to explore the potential

for model optimization to better adapt to a wider range of industrial applications.
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Fig. 1 Original X-ray image of upper end plug of fuel rod
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Fig. 2 Image of fuel rod after Gaussian binarization
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Fig. 3 Image cropped after extraction
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Fig. 4 Image after vertical projection
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Fig. 5 Single-rod segmentation demonstration
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