
 

基于深度学习的 X 射线燃料棒端塞缺陷
自动检测方法研究

张小刚，俞东宝，汤　慧，朱永利
（中核北方核燃料元件有限公司, 内蒙古 包头　014035）

摘要：为了提高深度学习在 X射线燃料棒端塞缺陷检测中的准确性，实现更高精度的无损检测，本文基于

YOLOX的目标检测模型，针对该场景下目标缺陷尺寸极小的特点，对网络结构和损失函数进行了相应的

改进，并在工业数据集上进行了验证。结果表明，该算法方案在保持较高识别速度的同时，识别精度获得

了明显的提升，达到生产检测要求。该研究方法为今后燃料棒端塞焊缝 X射线数字检测图像的高精度自

动分析评价打下了坚实的基础
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Detection Method of X-ray Fuel Rod End Plug Defect
Based on Deep Learning
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Abstract: Amidst  the global  expansion of  nuclear  power generation,  ensuring the integrity of  nuclear
fuel rods is crucial for the safe operation of nuclear power plants. As a vital component of fuel rods, the

detection  of  defects  in  the  end  plugs  is  a  key  step  in  ensuring  nuclear  safety.  Traditional  manual

detection  methods  are  not  only  time-consuming  and  inefficient  but  also  susceptible  to  subjective

influences.  To  address  these  issues,  this  study  proposed  an  automatic  detection  method  for  defects  in

fuel rod end plugs based on deep learning X-ray imaging, aiming to enhance the accuracy and efficiency

of detection. The research began by collecting a large number of X-ray images of fuel rod end plugs and

preprocessing  these  images,  including  single-rod  segmentation  and  extraction  of  effective  evaluation

areas,  to  optimize image quality.  Subsequently,  an improved YOLOX model  was adopted as  the core

detection  algorithm,  with  adjustments  made  to  the  network  structure  and  loss  function  to  address  the

characteristics  of  small  target  defects.  The  introduction  of  a  coordinate  attention  module  enables  the

model  to  more  accurately  locate  and  identify  tiny  defects.  Additionally,  the  CIoU  loss  function  was

employed in place of the traditional IoU loss function to improve the model’s localization precision for

small targets. During the model training phase, data augmentation techniques such as Mosaic, Copy and

Paste,  and  Mixup  were  implemented  to  enhance  the  model’s  adaptability  to  new  scenarios.  The
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experimental  results  demonstrate  that  the  improved  model  excels  in  the  task  of  end  plug  defect
detection,  with  significant  enhancements  in  detection  accuracy  and  speed  compared  to  traditional
methods and unimproved deep learning models. Tests on industrial datasets show a notable increase in
the  model’s  mean  average  precision  (mAP)  while  maintaining  a  fast  detection  speed,  meeting  the
requirements of actual production. The model also performs well in detecting various types of defects,
including accurate identification of porosity, swelling, incomplete welding, tungsten inclusion, and plug
abnormalities.  In  summary,  this  study  successfully  develops  an  efficient  and  accurate  automatic
detection method for defects in fuel rod end plugs based on deep learning X-ray imaging. This method
not only improves the level of detection automation but also provides strong technical support  for the
safe management  and maintenance of  fuel  rods.  Future research will  continue to explore the potential
for model optimization to better adapt to a wider range of industrial applications.
Key words: fuel rod; weld inspection; defect detection; deep learning; X-ray

燃料棒端塞焊缝在焊接过程中可能形成夹

钨、气孔、气胀、未焊透等缺陷，焊缝质量是燃料

棒生产制造中的一道关键控制点，根据 HAF0409

核燃料棒的采购设计和制造中的质量保证，设计

规范要求对核燃料棒焊缝进行 100% 检查。针对

燃料棒缺陷检测，目前业内主要采用 X 射线检

测 [1]、超声波检测 [2]、涡流检测 [3] 等。其中，X 射

线检测是主要的熔化焊端塞焊缝检测方法 [4]，目

前业内主要根据工程师的经验来判断检测结果，

但在检测效率和检测标准上会受到工程师主观性

的制约。

随着计算机和人工智能技术的发展，焊缝缺

陷检测从人工主观评估逐渐转向利用机器视觉算

法的方式实现自动检测。Tian 等[5] 使用图像数据

融合进行自动缺陷检测的图像处理方法，该方法

综合了边缘提取、波形轮廓分析、动态阈值分割和

焊缝区域提取等多种方法。Wang 等 [6] 提出了一

种基于深度学习的方法，通过采用预训练的基于

RetinaNet 的卷积神经网络来自动识别 X 射线图

像中的多种焊接缺陷类型和位置。针对 X 射线焊

缝中存在较多微小缺陷，且卷积过程中较容易丢

失微小缺陷的特征信息，Liu 等 [7] 应用注意机制

的 AF-RCNN 目标检测框架，将残差网络（ResNet）

与特征金字塔网络（FPN）相结合作为骨干，应用

高效卷积注意模块（ECAM）自适应地对感兴趣的

目标特征进行细节处理，以提高锚点定位精度。

王睿等 [8] 基于 YOLO-M 网络引入轻量级的倒残

差结构，采用多尺度预测机制，减少了网络计算

量，极大降低了检测任务的硬件需求，提高了检测

速度。

目前，基于深度学习的图像处理技术正在迅

速发展。然而，燃料棒端塞缺陷的种类多样性和

形态多变性对基于深度学习的自动化检测技术提

出了更高要求。卷积神经网络已被广泛应用于图

像处理、图像分割和目标检测等复杂任务 [9]。目

前主流的检测模型分为双阶段模型和单阶段模

型。双阶段模型包括 SSD[10-11]、Faster-RCNN[12-13]

等，而在目标检测中，单阶段检测模型如 YOLO 算

法等[14-16] 仍然是最常用的。单阶段检测模型具有

更快的检测速度和更高的精确率，在实际工业中

应用更为广泛。本文以 YOLOX算法为基础，针对

小目标缺陷，增加协同注意力模块，并采用优化后

的损失函数，在不增加模型参数量的同时，保持较

好的端塞焊缝缺陷识别速度和精度。 

1　数据集收集与预处理 

1.1　数据获取

本次实验数据均为数字 DR（digital  radio-

graphy）图像，非公共数据集，合计 1 000 根燃料棒

图像。样品为 CF3 型号燃料棒端塞，在制备过程

中，通过调整焊接工艺参数制成一批缺陷样品。

经人工审核后，样品缺陷包含气孔、气胀、未焊

透、夹钨和堵孔异常等。调整 X射线照射参数，设

置焦距为 900 mm，管电压为 260 kV，窗宽、窗位分

别调整至 50 000、25 000 左右（根据实际情况微

调），对端塞焊缝采用双壁双影透照并进行 120°×

3次透照，得到 1组 3张原始图像，端塞图像如图 1

所示。
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图 1    燃料棒上端塞 X射线原始图像
Fig. 1    Original X-ray image of upper end plug of fuel rod

  
1.2　单棒分割

在实际检测中，为了提高检测效率，一般在生

产线上会对 5～10 根燃料棒同时进行 X 射线照

射。而单棒分割环节是将单根燃料棒图像提取出

来，以方便进行后续分析处理。

1） 高斯二值化

高斯二值化是 1 种局部二值化方法，也叫自

适应阈值法。通过设定 1 个区域大小，比较这个

点与区域里面像素点的平均值（或其他特征）的大

小关系以确定这个像素点的情况。高斯二值化后

燃料棒图像如图 2 所示，使用高斯二值化后，燃料

棒图像轮廓较清晰，干扰小。
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图 2    高斯二值化后的燃料棒图像
Fig. 2    Image of fuel rod after Gaussian binarization

 
2） 轮廓提取

原始图像像素为 3 008×2 512，有大量空白区

域。对高斯二值化后的图像进行轮廓提取，获取

图像真实的紧凑区域，如图 3所示。

3） 垂直投影

对轮廓提取后的图像进行垂直投影，统计水

平方向上的像素分布，如图 4 所示。为了减少噪

声干扰，对统计的结果进行了阈值截断，即垂直方

向上像素个数小于阈值的位置，其值置为 0，表示

此处处于棒与棒分隔区域。

在此基础上进行单棒分割，分割后的图像如

图 5所示。

  

图 5    单棒分割效果展示
Fig. 5    Single-rod segmentation demonstration

  
1.3　评定区提取

本文为上、下端塞各准备了 2 张标准图像，将

单棒分割后的图像与标准图像进行模板匹配，以

提取出有效评定区。模板匹配的目的为：1） 检查

图像是否符合标准，是否有缺失，有无燃料棒未完

全插入情况等；2）  精准匹配出待评定区域，调高

缺陷检出效率。使用归一化相关系数匹配方法对

燃料棒图像进行模板匹配，计算方法如下：

T ′(x′,y′) = T (x′,y′)−1/(w ·h) ·
∑
x′′ ,y′′

T (x′′,y′′) （1）

I′(x+ x′,y+ y′) =I(x+ x′,y+ y′)−1/(w ·h) ·∑
x′′ ,y′′

I(x+ x′′,y+ y′′) （2）

R(x,y) =

∑
x′ ,y′

(T ′( x′,y′) · I′(x+ x′,y+ y′ ))√∑
x′ ,y′

T ′(x′,y′)2 ·
∑
x′ ,y′

I′(x+ x′,y+ y′)2

（3）

T I

x′,y′ x′′,y′′

式中：    为模板图像；    为待匹配图像；w 为模板图

像宽度；h 为模板图像高度；（x，y）为待匹配图像的

坐标；（    ）为像素在模板中的坐标；（    ）为

模板中遍历的像素坐标；T'为归一化后的模板图

像；I'为归一化后的待匹配图像；R（x, y）为像素在
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图 3    轮廓提取后裁切的图像

Fig. 3    Image cropped after extraction
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图 4    垂直投影后的图像

Fig. 4    Image after vertical projection
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（x, y）处待匹配图像与模板图像的匹配系数。

具体计算方法为在要检测的图像上，从左到

右，从上到下遍历这一幅图像，计算模板与重叠子

图像的像素匹配度，如果匹配的程度越大，说明相

同的可能性越大。如果待匹配图像为 W×H，模板

图像为 w×h，则结果矩阵大小为（W−w+1）×（H−

h+1）。最终的相关性数值被缩放到 [−1，1] 范围，

匹配结果根据返回的匹配矩阵取最大值，大于匹

配阈值，则认为图像与模板图像匹配。如图 6 所

示，左侧为模板图像，右侧为待匹配对象，模板匹

配度约为 0.92。 

1.4　数据增强

针对小目标检测，本文采用了多种数据增强

方法，包括 Mosaic、Copy and Paste 和 Mixup。Mo-

saic 数据增强是一种新的数据增强方法，其将 4 个

输入图像拼接在一起形成 1 个大图像，如图 7a 所

示。该方法可以有效提升训练集图像数量，提高

模型的泛化能力。Copy and Paste 数据增强的具

体做法为先将所有小目标抠出来备用，然后在图

像上复制这些小目标，要求两两之间不重合，并且

复制的位置不能超出图像评定区边界，如图 7b 所

示。原始的 Mixup 方法是将两张图像进行加权融

合，合并为 1 张图像，如图 7c 所示。这里根据燃

料棒缺陷图像的特点，结合 Copy and Paste，将不同

图像的缺陷部分经过缩放，加权融合为 1 张图像。

 
 

a b c

a——Mosaic；b——Copy and Paste；c——Mixup

图 7    数据增强后的图像

Fig. 7    Image after data augmentation
 
 

2　模型设计

为了平衡算法的检测精度和速度，本文提出

了一种以 YOLOX 为基础网络框架的改进型燃料

棒 X 射线缺陷目标检测算法。通过修改原始网络

结构、优化模型训练损失函数，改善算法对 X 射

线图像复杂信息的提取能力，在工业生产线的燃

料棒缺陷目标检测数据集上，结果验证了所提算

法的检测性能。
 

2.1　YOLOX 框架与原理

模型整体架构如图 8 所示，主要由输入端、

模型 Backbone 网络、模型 Neck 网络以及模型

Prediction 4部分组成。

YOLOX 的 Backbone 部分采用了类似于 Res-

Net 的模型结构。与 DarkNet Backbone 不同，

YOLOX 中的 Backbone 使用轻量级的模块来减少

计算复杂度和参数数量。这种设计使得 YOLOX

在保持较高性能的同时，具有更低的计算复杂度

和更少的参数。YOLOX 的 Neck 部分采用了特征

金字塔网络（feature pyramid network, FPN）结构，

用于结合不同尺度的特征图。这种设计有助于捕
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图 6    通过模板匹配方式提取评定区

Fig. 6    Extract evaluation area through template matching
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捉多尺度的目标，提高模型对不同大小目标的检

测能力。同时，YOLOX还采用了自上而下的路径增

强策略，通过跨层连接来进一步提高特征的表达

能力。YOLOX 的 Prediction 部分负责在特征图上

进行预测。与其他 YOLO 系列模型相似，YOLOX

的 Prediction 部分采用了单阶段目标检测的设计。

在每个特征图位置，模型预测 1 个目标的类

别、边界框和目标对象的置信度。主要从 Decou-

pled Head、Anchor Free、标签分配和 Loss 计算

4个方面进行了改进优化。

原来的 YOLO 系列都采用了 1 个耦合在一起

的检测头，同时进行分类、回归的检测任务（参数

更小）。YOLOX在结构上采用了解耦头（Decoupled

Head）设计（从 RetinaNet 后就被广泛应用），将特

征平行分成两路卷积特征，同时为了降低参数量

提前进行了降维处理，如图 9 所示，其好处在于：

在检测过程中分类需要的特征和回归所需要的特

征往往不同，所以在 Decoupled Head 中进行解耦

处理后，特征的学习过程会变得更加简单，而且回

归分支里还添加了 IoU分支。

YOLOX 的预测头采用了 Anchor Free 的设

计，消除了传统基于 Anchor 的方法中手动选择

Anchor 尺寸的需求。这有助于简化模型，同时提

高泛化性能。YOLOX 采用了 Focal Loss 作为损

失函数，用于解决类别不均衡问题。Focal Loss 在

训练过程中对难以分类的样本给予更大的权重，

从而使模型更关注这些样本。这有助于提高模型

在各类别间的检测性能。 
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图 8    YOLOX模型框架

Fig. 8    YOLOX model framework
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图 9    YOLOX的解耦头图解

Fig. 9    Decoupled Head diagram of YOLOX
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2.2　算法改进

针对 X 射线燃料棒端塞缺陷检测场景，算法

主要从模型网络结构和损失函数两个方面进行了

针对性的改进优化。

1） 网络修改

改进的空间多尺度网络如图 10 所示，将骨干

网络最后 3 层特征层，分别经过协同注意力模块

（CA）后，生成对应的 Neck 层网络。对于多尺度

预测，参考 FPN 的思想，采用直接添加的方式构

建额外预测特征图 N4。即选取充分融合上下文

信息的 N3 层，通过卷积操作和上采样后，扩大特

征图尺寸，并与包含大量细节信息的 F4 层拼接

（Concat），经过基础构建块 CSP2_1 充分混合特

征，输出特征图 N4。特征图 N4 由于其感受野更

小，包含了更多细节信息，因而更适合小目标检测

任务。

CA 用于发掘现有数据的关联性。其将位置

信息嵌入信道注意力中，这不仅建模了数据通道

间的关系，而且捕获了位置信息间的依赖关系，突

出重要特征。此外，该模块计算量和参数量较小，

带来的计算负担可以忽略不计，且支持热插拔，即

插即用，非常适合在轻量级算法中使用。CA 结构

如图 11所示。

给定输入特征图：

I ∈ RC×H×W （4）
×

×
式中， I 为输入特征图，是尺寸为 C（通道数）  

H（高度）    W（宽度）的实数矩阵。首先，通过两个

沿着不同空间维度的平均池化层（池化核大小分

别为（1，W）和（H，1）），得到两个聚合了不同维度

信息的特征向量，然后通过维度转换来拼接这两

个维度的特征向量，再通过 1×1 的卷积进行通道

扩充，充分学习二者捕获的位置和关联信息，准确
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地突显感兴趣的区域。这样不仅捕获了当前空间

方向的依赖关系，而且保留了另一个空间方向精

确的位置信息。最后得到的特征向量大小为：

shape(output) =
C
r
×1× (H+W) （5）

式中：shape（output）为输出特征向量的形状尺寸；

r 为控制通道数缩小的比例，可降低计算量，减少

推断时间。紧接着，沿着空间维度再次分割为两

个独立的特征向量，并通过 1×1 卷积和激活函数

变换为通道数量相同的特征图。最后，与输入特

征图逐元素相乘。

2） 损失函数改进

采用 IoU 损失函数作为边界框回归损失时，

如果出现重叠，将不能为边界框提供准确的移动

方向，这会导致在小目标检测问题上定位性能不

佳。CIoU 损失函数是 IoU 损失函数改良版，引入

了中心位置和长宽比误差计算，一方面解决了与

目标框的重叠问题，另一方面对重叠区域、中心

点距离和长宽比方面的考量，使得损失函数收敛

速度更快。因此，本文采用 CIoU 损失函数作为边

界框回归损失

LCIoU = 1− IoU+
ρ2(b,bgt)

c2
+αv （6）

其中：

α =
v

1− IoU+ v
（7）

v =
4
π2

(arctan
wgt

hgt
− arctan

w
h

)
2

（8）

式中：IoU 为预测框和真实框之间的交并比；ρ 为

两点欧式距离；b 和 bgt 分别为预测框和真实框的

中心点；c 为预测框和真实框最小外接矩形的对角

线距离；α 为协调比例参数；v 为用于衡量框的长

宽比一致性的参数；w、h 和 wgt、hgt 分别为预测框

的宽度、高度和真实框的宽度、高度。

更进一步，综合各 IoU 损失函数，综合修改损

失函数为：

Lβ−CIoU = 1− IoUβ+
ρ2β(b,bgt)

c2β
+ (αv)β （9）

式中，β 为可调节的指数超参。经实验表明，β=3
时效果较好。 

3　实验及结果分析 

3.1　训练模型

本次端塞焊缝缺陷 X 射线图像数据集共

1 000 张，焊缝缺陷包括气孔、气胀、未焊透、夹钨

以及堵孔异常 5种内部缺陷。采用Mosaic、Mixup、

Copy and Paste 进行数据增强后，数据集扩充到

3 854 张，扩充后的数据集具有多样性。数据集根

据缺陷类型进行分层采样，训练集、验证集、测试

集占比约为 6∶2∶2，即训练集 2 312 张，验证集

771张，测试集 771张。

在 Linux 系统下，基于 Pytorch 深度学习框架

并结合 Python进行实验，硬件设施如表 1所列。

  
表 1    硬件设施

Table 1    Hardware configuration

硬件 配置

CPU I7-13700

GPU NVIDIA V100×4

内存，GB 32

 

训练时输入图片大小为 640 pixel×640 pixel，

批次大小（batch size）设置为 64。迭代轮次（epoch，

训练完所有样本为 1 轮）为 700，设置了 early stop-

ping 策略（如果 50 个 epoch 模型效果没有提升即

停止）。为了方便比较，均使用 Adam 优化器对模

型参数进行优化。在最后 15 个 epoch 时关闭数据

增强。在训练过程中采用了随机尺度调整，以适

应不同大小的目标。这种策略可以提高模型对输

入图像尺度变化的鲁棒性。图 12 展示了算法训

练和验证过程中各损失量随训练轮次变化收敛的

情况。其中，定位损失用于衡量模型预测的边界

框（包括位置和大小）与真实边界框之间的差异，

目标损失用于评估模型预测的边界框内是否真的

有目标存在，分类损失衡量的是模型对于已定位

目标的缺陷类别预测准确性。 

3.2　结果

1） 评价指标

本文采用目标检测领域常用的评价指标

AP（平均精度）和 mAP（mean average precision，平

均精度均值，即各类别 AP 的平均值）来评价模型

精度，用 FPS（每秒能处理图片的张数）来评价算

法速度。

定义：TP(true positive)，预测值和真实值一样，

预测值为正样本（真实值为正样本）；TN（true neg-
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ative），预测值和真实值一样，预测值为负样本（真

实值为负样本）；FP（false positive），预测值和真实

值不一样，预测值为正样本（真实值为负样本）；

FN（false negative），预测值和真实值不一样，预测

值为负样本（真实值为正样本）。则精度定义为

precision=TP/（TP+FP），召回率定义为 recall=TP/

（TP+FN）。PR 曲线，即 precision 和 recall 的曲线，

当取不同阈值时可以得到不同的 P、R 值，画成图

像就是 PR 曲线。AP 为 precision-recall 曲线下面

的面积，AP值越高，代表模型的性能越好。

在目标检测中，1 个模型通常会检测很多种物

体，那么每一类都能绘制 1 个 PR 曲线，进而计算

出 1个 AP值。那么多个类别的 AP值的平均值就

是 mAP。

2） 结果对比

表 2 为不同模型的 AP、mAP、检测速度的对

比，可以看出，改进后的 YOLOX 模型与原始模型

相比，在检测速度增加不明显的情况下，AP和mAP

均有提升，这说明在网络中增加了 CA 以及采用

更新的损失函数后，有效提升了检测精度水平。

 
 

表 2    端塞焊缝缺陷识别效果对比（测试集）

Table 2    Comparison of defect recognition result for end plug weld (test dataset)

模型
AP mAP

0.5∶0.95
检测速度 (GPU)/FPS 模型参数量/M

气孔 气胀 未焊透 夹钨 堵孔异常

改进后的 YOLOX 0.89 0.80 0.88 0.93 0.86 0.87 55.56 63.9

YOLOX 0.86 0.76 0.85 0.89 0.83 0.84 57.80 63.7

YOLOv5 0.85 0.75 0.83 0.87 0.82 0.82 62.50 46.5

Faster-RCNN(ResNet-50 FPN) 0.87 0.79 0.86 0.90 0.84 0.85 11.17 42

 

检测结果样例如图 13 所示，可以看出图像输

入改进的 YOLOX 模型后，对于缺陷预测效果有

较高的准确度。 

4　结论

本文针对 X 射线燃料棒端塞缺陷检测问题，

基于其缺陷目标极小的特点，在 YOLOX 目标检
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图 12    训练过程损失量的变化

Fig. 12    Variation of loss value during training process

1774 原子能科学技术 第58卷



测算法基础上，改进了深度学习网络结构和优化

损失函数，并与常见深度学习目标检测算法进行

对比。在实际工业生产数据集上验证结果表明，

本文所提出的算法方案，在保持较高识别速度的

同时，识别精度获得了明显提升，达到生产需要，

证明了其有效性。该研究方法为今后燃料棒端塞

焊缝 X 射线数字检测图像的高精度自动分析评价

打下了坚实的基础。
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