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Abstract: The open lattice gas-cooled reactor presents a lightweight option for high-power space
reactor power systems. The background of this study is a space reactor featuring a rod bundle core
structure, with helium as the coolant. The typical Reynolds number at the core inlet is around 2 000.
Reynolds average numerical simulation (RANS) is a commonly used computational fluid dynamics
(CFD) method. The essence of the RANS method lies in turbulence models. Each turbulence model has
its particular useful scenarios and needs to be chosen based on the specific working conditions. The
helium-cooled rod bundle reactor is distinguished by its tight lattice structure and low flow Reynolds
number. These features influence the flow and heat transfer characteristics in the reactor core.
Consequently, when performing thermal-hydraulic analysis using CFD, it is essential to evaluate the
applicability of turbulence models. Experiments of flow and heat transfer in 37-rod bundle structure
were conducted, using electrically heated rods of the same size as the fuel rods and nitrogen as the
experimental coolant. Based on these experiments, the convective heat transfer within the test section

was numerically simulated using ANSYS Fluent, selecting four turbulence models: Realizable k-¢ with
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enhanced wall treatment, SST k-w, transition SST, and Reynolds stress model with enhanced wall
treatment. The operating conditions for numerical calculations had inlet Reynolds numbers ranging
from 688 to 2 986, all with uniform power distribution. By comparing the experimental measurements
and calculated values of the heating rod cladding temperatures, the applicability of the four turbulence
models was evaluated. Simultaneously, the differences in local flow field simulations by these models
were observed, and an analysis was performed to understand the reasons behind the discrepancies in
cladding temperature calculations among the different models. The results show that all four turbulence
models generally underpredict the rod cladding temperatures. Among these models, the transition SST
model exhibits the closest agreement with experimental data, with an overall average deviation of
—2.0%. It effectively captures the crossflow characteristics between the rod bundle and is suitable for
thermal-hydraulic simulations of open lattice gas-cooled reactor with Reynolds number around 2 000.
This study confirms that the crossflow is an important factor affecting the flow and heat transfer in open
lattice structures. Subsequent researches are needed to further investigate the factors and patterns
influencing crossflow, in order to minimize its adverse effects on the heat transfer in the reactor core.
The findings of this paper provide a reference for the numerical simulation and design of rod bundle
gas-cooled reactors.
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Fig. 1 Structural diagram of rod bundle test section
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Fig.2 Schematic diagram of hexagonal bundle with 37 rods
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Table 1 Structural dimensions of rod bundle test section
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Table 2 Number of thermal-couples on each position
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Table 3 Experiment operating conditions
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Fig. 5 Axial temperature variation on each rod position
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