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Abstract: The presence of noise and other isotope characteristics in the background environment can
significantly impact the accuracy of thickness measurements when using the y-absorption method in a
noisy or complex radioactive environment. Therefore, it is essential to conduct research on a gamma
absorption method with strong anti-noise capabilities and good stability. Aiming at the problems of
energy spectrum background elimination and peak area calculation in gamma thickness measurement, a
gamma thickness measurement method was established based on U-Net deep learning network to
improve the measurement efficiency, stability and anti-interference ability of gamma thickness

measurement method. Firstly, a gamma absorption thickness measuring device was built based on
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24 Am radioactive source and cadmium zinc telluride detector to measure samples of different thickness
and obtain sufficient energy spectrum data. The corresponding baseline elimination spectra were
obtained by traditional methods and manual methods, and the training dataset was established. The
gamma spectrum baseline elimination network was built based on U-Net, and the network was trained
using the established dataset. Using the PPS40 thickness measurement results as an example, Gaussian
noise and a Gaussian peak were added to the original energy spectrum data to simulate various levels of
noise and radioactive environment. The stability of the thickness measurement method under various
noise and radioactive environment was studied, and it was compared with the conventional method. The
findings reveal that the established gamma thickness measurement method yields a maximum peak area
change rate of only 0.049% under the same noise environment, outperforming the conventional
approach’s 0.85%. In the presence of interference from other Gaussian peaks, the proposed gamma
thickness measuring method can effectively subtract the Gaussian peaks unrelated to thickness
measurement, with a maximum peak area change rate of only 7.58%, outperforming the traditional
method which has a peak area change rate of 33.29%. This demonstrates a superior anti-interference
capacity compared to the conventional method. As a result, the gamma thickness measurement method
based on deep learning offers a novel approach to the data processing of gamma ray thickness
measurement. It enhances the gamma thickness measurement method’s anti-noise and anti-interference
capability, enabling its application in complex radiation environments and expanding its potential
application fields.
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Fig. 1 Flow chart of gamma thickness measurement method based on deep learning
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Table 3 Comparison of peak area results using different methods
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