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摘要：噪声环境或复杂放射性本底环境下采用 γ吸收法测厚时，由于噪声和其他同位素特征峰会对测厚结

果产生不利影响，γ吸收法测厚方法的稳定性和抗干扰能力有待进一步提升。因此，基于深度学习建立一

种新颖的 γ能谱测厚方法，并利用 241Am放射源和碲锌镉探测器搭建了一套 γ测厚装置，对测厚方法进行

训练和验证。首先，利用搭建的测厚装置对不锈钢、陶瓷和塑料等不同材质、不同厚度的样品进行测量。

随后，利用采集到的能谱数据建立数据集对测厚方法进行训练，在原始能谱数据中添加高斯噪声和高斯峰

模拟不同程度的噪声和放射性环境，研究了 γ测厚方法在不同噪声和放射性环境下测厚稳定性，并与传统

方法进行对比。结果表明，在相同噪声环境下，建立的 γ测厚方法引起的最大峰面积变化率仅 0.049%，优

于传统方法的 0.85%；在有其他高斯峰干扰的情况下，建立的 γ测厚方法能有效扣除其他高斯峰，最大峰面

积变化率仅 7.58%，优于传统方法的 33.29%，抗干扰能力优于传统方法。因此，基于深度学习建立的测厚

方法为 γ射线测厚的数据处理提供了新思路，提高了 γ测厚方法的抗噪能力和抗干扰能力，有助于将 γ测

厚方法应用于复杂放射性环境，进一步拓宽 γ测厚方法的应用领域。
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Abstract: The presence of  noise  and other  isotope characteristics  in  the background environment  can
significantly impact the accuracy of thickness measurements when using the γ-absorption method in a
noisy  or  complex  radioactive  environment.  Therefore,  it  is  essential  to  conduct  research  on  a  gamma
absorption  method  with  strong  anti-noise  capabilities  and  good  stability.  Aiming  at  the  problems  of
energy spectrum background elimination and peak area calculation in gamma thickness measurement, a
gamma  thickness  measurement  method  was  established  based  on  U-Net  deep  learning  network  to
improve  the  measurement  efficiency,  stability  and  anti-interference  ability  of  gamma  thickness
measurement  method.  Firstly,  a  gamma  absorption  thickness  measuring  device  was  built  based  on
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241Am radioactive source and cadmium zinc telluride detector to measure samples of different thickness
and  obtain  sufficient  energy  spectrum  data.  The  corresponding  baseline  elimination  spectra  were
obtained  by  traditional  methods  and  manual  methods,  and  the  training  dataset  was  established.  The
gamma spectrum baseline elimination network was built based on U-Net, and the network was trained
using the established dataset. Using the PPS40 thickness measurement results as an example, Gaussian
noise and a Gaussian peak were added to the original energy spectrum data to simulate various levels of
noise  and  radioactive  environment.  The  stability  of  the  thickness  measurement  method  under  various
noise and radioactive environment was studied, and it was compared with the conventional method. The
findings reveal that the established gamma thickness measurement method yields a maximum peak area
change  rate  of  only  0.049%  under  the  same  noise  environment,  outperforming  the  conventional
approach’s  0.85%.  In  the  presence  of  interference  from  other  Gaussian  peaks,  the  proposed  gamma
thickness  measuring  method  can  effectively  subtract  the  Gaussian  peaks  unrelated  to  thickness
measurement,  with  a  maximum  peak  area  change  rate  of  only  7.58%,  outperforming  the  traditional
method  which  has  a  peak  area  change  rate  of  33.29%.  This  demonstrates  a  superior  anti-interference
capacity compared to the conventional method. As a result, the gamma thickness measurement method
based  on  deep  learning  offers  a  novel  approach  to  the  data  processing  of  gamma  ray  thickness
measurement. It enhances the gamma thickness measurement method’s anti-noise and anti-interference
capability,  enabling  its  application  in  complex  radiation  environments  and  expanding  its  potential
application fields.
Key words: nondestructive measurement; deep learning; γ absorption method; baseline elimination

γ 射线测厚法采用 γ 放射性同位素，通过测量

透过样品的射线强度得到样品的厚度信息，具有

无损测量、测量精度高、经济效益好和使用寿命

长等优点，在工业领域已得到广泛应用，Bessinger

等 [1] 利用煤炭附近的页岩层中存在的天然 γ 辐

射，实现预留煤层厚度测量；韩揽月等 [ 2 ] 利用
241Am 放射源和 NaI（Tl）闪烁体探测器，通过测量

反散射 γ 射线强度，实现坩埚厚度测量；王飞等 [3]

研究了三点式 γ 射线测厚仪在钢板厚度测量的应

用及测量精度影响因素；Weng 等 [4] 利用137Cs 和

NaI（Tl）闪烁体探测器研究 γ 射线厚度测量的检测

方法和最佳的测量状态，Chuong 等[5] 利用蒙特卡

罗方法拟合校准曲线和伽马射线背散射法实现铝

板的厚度测量，同时该课题组又利用蒙特卡罗方

法模拟137Cs 放射源释放的 γ 射线穿透不同材料板

的能谱，获取校准曲线，实现厚度测量[6]。

目前，对于 γ 射线测厚的研究主要集中在方

法设计和测量装置结构优化等方面，而对于 γ 能

谱数据后处理的相关研究则较为匮乏。γ 能谱数

据后处理包括能谱基线扣除和峰面积计算等，能

谱中基线的存在影响测量系统的能量分辨率和稳

定性[7]，进而影响全能峰峰位的确立，而峰面积计

算方法的选取则直接影响峰面积的计算精度和厚

度分辨率。因此，精准的能谱基线扣除和峰面积

计算是实现厚度精准测量的必要条件。传统基线

扣除方法包括傅里叶变换、数字滤波法、迭代谱

线剥离和统计敏感的非线性迭代剥峰算法[8]（stat-

istics-sensitive nonlinear iterative peak-clipping al-

gorithm，SNIP）等，其中，SNIP 方法是一种有效的

能谱背景评估方法，在能谱基线扣除中有广泛应

用[9-11]。但 SNIP 方法的滤波窗宽度需通过实验测

试和人工选择，缺乏自适应性。神经网络和深度

学习具有自主学习数据内在特征的能力，已在语

音识别、图像处理、目标识别和分割等领域得到

广泛应用[12-13]。近年，利用神经网络或深度学习方

法开展 γ 能谱分析的研究逐渐增多。杜晓闯等[14]

利用 RBF 神经网络对不同核素的 γ 能谱进行模

拟，表明神经网络在建立核素库实现核素识别等

方面有良好的应用前景；申慧等 [15] 利用 BP 神经

网络算法对 γ 射线能谱进行分析，实现了对核素

的分类；胡浩行等[16] 将 γ 能谱转为灰度图，利用卷

积神经网络实现了多核素分类。这些研究主要集
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中于 γ 能谱在核素分类方面的应用，而将神经网

络及深度学习方法用于 γ 能谱的基线扣除和 γ 测

厚方面的研究则较少。

传统的能谱基线扣除方法需人工选择参数，

无法实现自适应调整，且对噪声较敏感，在能谱中

存在弱峰、重峰和高本底等情况时，误差较大 [17]，

从而导致全能峰测量有误，无法进行有效刻度，实

现精确厚度测量。而深度学习方法可自主学习到

数据更高级的特征，有助于提高 γ 测厚方法的稳

定性和抗干扰能力。本研究基于深度学习方法开

展 γ 能谱测厚方法研究，优化能谱基线扣除方法，

利用241Am 和碲锌镉（CZT）探测器搭建一套 γ 测

厚装置，对测厚方法进行训练和验证，实现厚度测

量，提高 γ 测厚方法的稳定性和抗干扰能力。此

外，由于 Ronneberger 等[18-20] 提出的 U-Net 网络采

用 Concatenate 结构将编码网络（encoder network，

EN）每层特征信息传递给解码网络（decoder net-

work，DN）对应输出层，保留图像中更多细节信

息，有助于实现精确预测，本文基于 U-Net 搭建能

谱分析网络（spectrum analysis network，SpeNet）实

现 γ 能谱分析和厚度测量。区别于一般能谱分析

网络的输入和输出数据类型，首先将一维的能谱

数据转化为二维灰度图，作为 SpeNet 网络的输入

和输出，SpeNet 网络通过 EN 和 DN 之间的信息传

递，学习每个道址的特征信息的同时，也将有助于

提取相邻道址间的关联信息，提高网络的学习能

力和准确性。 

1　测量原理与方法 

1.1　γ 厚度测量原理

本研究所搭建的系统厚度测量采用 γ 吸收

法，放射源释放一定能量和强度的 γ 射线，探测器

测量透过待测物体的射线强度，反推出物体厚度，

如式（1）所示，一定强度的 γ 射线与待测物体发生

相互作用（主要是光电效应和康普顿散射）使得

γ 射线的强度衰减，通过探测透射射线的强度可得

到样品的厚度等信息。

I = I0e−µmρd （1）

I

I0 µm

ρ d

ρ

d I

I

d

其中：    为射线通过待测物体后的强度，即射线透

射强度，cm−2·s−1；    为入射射线强度，cm−2·s−1；    、

 和    分别为待测样品的质量衰减系数、密度和厚

度，单位分别为 cm2/g、g/cm3 和 mm。当样品    保

持不变，样品    与    呈指数关系，当厚度变化范围

较小时，可使用多项式代替指数关系拟合，得到合

适的刻度曲线，实现厚度测量，实际测量中通过计

算能谱中全能峰面积作为不同厚度的    ，与对应的

 建立刻度曲线，从而通过透射能谱全能峰面积预

测样品厚度。 

1.2　基于 U-Net 的 γ 测厚方法

传统的 γ 厚度测量方法一般可分为能谱测

量、能谱分析和曲线标定等 3 个过程，曲线标定完

成后就可用于样品厚度测量。本文建立的 γ 测厚

方法创新能谱分析过程，采用深度学习方法替代

传统的基线扣除方法，得到基线扣除能谱后进行

峰面积计算，得到的峰面积用于曲线标定和厚度

测量，本文建立的 γ 测厚方法流程如图 1 所示。

首先利用搭建的 γ 测厚装置得到不同厚度样品的

能谱数据 X，通过传统方法和人工方法对能谱数

据进行基线扣除，得到扣除本底的能谱数据 Y，

X 和 Y 一一对应，并将其转化为二维灰度图，建立

数据集。而后基于 U-Net 网络建立适用于 γ 能谱

分析的 SpeNet 网络 ，利用已建立的数据集对

 

厚度样品

能谱测量

深度学习方法

能谱分析 曲线标定

241Am放射源

CZT探测器

图 1    基于深度学习的 γ测厚方法流程

Fig. 1    Flow chart of gamma thickness measurement method based on deep learning
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SpeNet 网络进行训练和验证。网络训练完成后，

替代传统的能谱分析方法，对 γ 测厚装置得到的

能谱数据进行基线扣除和峰面积计算，得到峰面

积与样品厚度的关系式，重新完成装置测厚曲线

的标定，实现对未知样品的厚度测量。 

1.3　能谱数据转化

本研究将一维的能谱数据转化为二维灰度

图，转化结果如图 2 所示，转化过程中一方面要适

应 SpeNet 网络的输入和输出数据格式，另一方面

使得网络实现对每个道址的特征信息提取的同

时，又提取附近道址的关联特征，充分利用 γ 能谱

的信息，提升网络的预测性能。深度学习网络的

输入和输出普遍采用归一化的数据，从而方便网

络的训练和防止梯度扩散或消失。因此，首先根

据式（2）将每一道址的计数归一化。

Nnorm =
N −Nmin

Nmax−Nmin
（2）

N Nmin

Nmax Nnorm

其中：    为每道址的计数；    为能谱中道址的最

小计数；    则为道址的最大计数；    为归一化

后的每道址的计数。根据能谱数据中的道数

n2 将一维数据转化为 n×n 的二维矩阵，即二维的

灰度图，如图 2 所示，将 144 道的能谱数据转化为

12×12 的灰度图，作为网络的输入和输出。灰度

图的长和宽一致，防止 SpeNet 网络在 EN 下采样

和 DN 上采样过程中由于特征图不一致导致模型

无法训练。 

1.4　SpeNet 网络

本文建立的 SpeNet 网络如图 3 所示，网络的

通道数 n 为 64，网络深度为 2，网络的输入和输出

为能谱数据转化的二维灰度图，本文搭建的厚度

测量装置测得的能谱数据主要集中在 1～150 道

范围内，为保证能谱转化成的灰度图长和宽一致，

因此选取了 1～144 道的能谱数据，即将能谱转化

为 12×12×1（1 为输入通道数）的灰度图。因为输

入为原始能谱转化的灰度图，输出为基线扣除能

谱转化的灰度图，因此两者的尺寸和通道数保持

一致，均为 12×12×1。SpeNet网络可分为 EN和 DN

结构。其中，EN 包括卷积（Conv）、批量归一化

（batch normalization）、激活函数（activation）和池化

（pooling）等操作，通过卷积操作获取图像特征信

息，不同的通道获取不同的特征信息。批量归一

化使得特征值保持在 0～1 的范围，防止梯度扩散

而无法进行权值更新，保证网络正常学习。激活

函数实现不同的非线性操作，使得整个深度学习

网络近似为一个非线性的通用函数逼近器 [21]，有

助于解决复杂问题。池化操作保留关键信息的同

时减小中间数据空间大小，提高运算速度，为继续

增加网络深度提供便利，一般采用最大池化（max

pooling）。DN 中通过卷积转置（Conv2d transpose）

操作将特征信息进行整合并增加图像尺寸，最终

使得输入与输出图像尺寸一致。不同层级提取不

同特征信息，层级越深，提取的信息越高阶。相对

应的每一层之间通过 Concatenate连接实现特征信

息传递，保留图像的更多细节信息，该连接方式有

利于提高预测图的准确度，因此本文也采用此种

连接方式，有利于网络预测出更加精准的基线扣

除谱。 

1.5　γ 测厚装置

CZT 探测器具有可在室温条件下工作、能量

分辨率高、快速响应、工作稳定等优点，CZT 晶体

对 γ 射线有很强的吸收本领，但由于其厚度有限，

对于中高能 X 射线或 γ 射线探测效率较低，因此

CZT 探测器被广泛用于低能 X 射线和 γ 射线的测

量[22]。本文选取的241Am放射源强度为 1.39×109 Bq，

特征射线能量为 59.6 keV，能量较低，因此选取

CZT 探测器搭配241Am 放射源建立一套 γ 测厚装

置，如图 4 所示，测厚装置主要包括：放射源及放

置架、样品架、CZT 探测器、三轴位移台、能谱软

 

道址数为144的能谱转化为
12×12的图片
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图 2    能谱数据转化示意图

Fig. 2    Schematic diagram of energy spectrum
data transformation
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件和直流电源等。CZT 探测器将准直器、探测晶

体、电荷灵敏前置放大器和高压模块集成化，对
241Am 的 59.6 keV 特征峰的能量分辨率优于 10%，

本征探测效率优于 99%。采用费思（Faith）直流电

源 FTL8020P 为探测器提供 5 V 的稳压电源，电压

噪声小于 50 mV。利用此装置进行厚度测量，为

SpeNet 的网络训练和测厚方法验证提供能谱数

据集。
 

2　网络训练与方法验证
 

2.1　γ 装置测厚

利用建立的 γ 测厚装置分别对 A4 纸、锡纸、

不锈钢标准厚度块、陶瓷标准厚度块和塑料样品

等进行测量，部分样品如图 5 所示。根据样品种

类、样品与源和探测器的位置、单次测量时间等

实验条件设置多组测量状态，每种测量状态下进

行多次测量，得到不同样品和相同样品不同强度

的多种 γ 能谱数据，保证 γ 能谱数据量的同时增

加数据集的多样性，从而提升 SpeNet 网络的泛化

能力。 

2.2　数据集及网络训练

对 γ 测厚装置测得的能谱进行分析，采用传

统的 SNIP 方法，通过调试选取合适的滤波窗宽

度，对能谱数据进行基线扣除，得到与原始能谱

X 相对应的基线扣除能谱 Y。将 X 和 Y 转化为灰

度图，建立用于 SpeNet 网络训练的数据集，数据

集可分为训练集和验证集，其中训练集有 1 440组，

验证集有 360 组，共 1  800 组，部分训练集如图 6

所示。

SpeNet 网络搭建和训练采用 Tensorflow2.0 深

度学习模型框架，相应的数据分析程序基于 Py-

thon 语言编写。训练过程中，卷积部分的激活函

数使用 Relu 激活函数[23]，权值初始化采用与 Relu

相匹配的 He 初始值 [24]，梯度优化算法采用 Adam

函数[25]，网络训练次数取为 100次。SpeNet网络需

对每道址的计数实现精准预测，属于回归问题。

因此，SpeNet 网络输出层采用 sigmoid 函数，损失

函数采用均方误差（mean squared error， MSE），不

再采用用于分类的交叉熵损失函数。网络训练完

成后，应用于本文建立的 γ测厚方法。 
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图 3    SpeNet网络结构

Fig. 3    Network structure of SpeNet
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: 三轴位移台;4 : 能谱软件;5 : 直流电源6

1

2

3

5

6

4

图 4    γ测厚装置图

Fig. 4    Gamma thickness measurement device
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2.3　测厚方法验证

以实验中测量的 PPS40 样品为例，对本文建

立的测厚方法进行验证。PPS40 样品的厚度为

13、14、15、16、17 mm，除厚度不同外，其他条件

保持一致，如图 5c 所示。采用本文搭建的 γ 测厚

装置进行厚度测量，每种厚度样品单次测量时间

为 300 s，测量 5次。分别采用 SNIP方法和 SpeNet

方法对测得的能谱数据进行基线扣除和峰面积计

算并对比分析，用于验证 SpeNet 网络基线扣除效

果和本文建立的测厚方法的可行性。对不同厚度

PPS40 样品测得的能谱添加强度为 100、300 和

500 等不同程度的高斯噪声，并利用 SNIP 方法和

SpeNet 方法进行对比，验证不同高斯噪声环境下

的测厚性能。进一步对不同厚度 PPS40 样品测得

的能谱随机添加高斯峰，模拟放射性环境下其他

核素特征峰的干扰，验证 SpeNet方法的抗干扰能力。 

3　结果与讨论 

3.1　能谱拟合性能与测厚性能

对完成训练的 SpeNet 网络进行测试，部分预

测结果如图 7 所示，图 7a 中将能谱灰度图转化为

彩色图，方便对比不同能谱图间的差异，图 7b、c、

d 分别表示原始能谱图、真值图和 SpeNet 预测的

基线扣除能谱图。图 7 b 展示的能谱图中第

2～4 行可被明显识别出，与转化前的原始能谱对

比可知，第 2 行主要展示的是241Am 全能峰前的散

射峰，第 3～4 行展示的是241Am 的全能峰，其中峰

位计数最多，则以红色显示。图 7c 则可看出，经

传统方法得到的标准基线扣除的能谱转化为的彩

色图中第 2 行变为背景色，说明241Am 的 γ 能谱中

散射峰已被有效扣除；图 7d为 SpeNet预测的基线

扣除能谱，可看到，与图 7c 差别不大，说明通过该

网络可实现能谱基线扣除。

以 PPS40 样品测量结果为例，SNIP 和 SpeNet

方法的对比结果如图 8 所示，图 8 展示两种方法

基线扣除能谱对比和两种方法得到的归一化峰面

积对比。图 8a 以 PPS40 厚度 13 mm 样品的 γ 能

谱为例，展示两种方法的基线扣除能力，可看到

SpeNet 得到的基线扣除能谱与传统 SNIP 方法得

到的基线扣除能谱几乎重合，散射峰和本底基本

被扣除，与图 7c 展示的结果一致。图 8b 展示两

种方法得到的基线扣除能谱进行峰面积计算后归

一化，得到的相对峰面积与厚度关系图，可看到两

种方法计算得到的峰面积与样品厚度均呈现出指

数衰减关系，且不同厚度对应的峰面积几乎一致，

证明了本文基于 SpeNet 建立的厚度测量方法可

行，可替代传统方法用于 γ厚度测量。 

3.2　噪声环境下的测厚性能

本文建立的 γ 测厚装置采用的放射源特征峰

单一且射线源强度较强，得到的能谱的噪声较低，

为研究本文建立的测厚方法抗噪能力，给能谱添

 

a. 高速钢样品 b. 陶瓷样品

c. 塑料样品

PA PEEK

PET POM

PPS40 PTFE

图 5    厚度样品

Fig. 5    Some thickness samples

 

能谱图

真值图

图 6    能谱灰度图训练集

Fig. 6    Some training datasets composed of energy spectrum gray-scale images
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加不同程度的高斯噪声，模拟不同噪声条件，对

比 SpeNet 和 SNIP 两种方法的厚度测量结果，如

图 9所示。图 9表示不同噪声条件下 SNIP和 SpeNet

方法扣除基线后计算峰面积得到的相对峰面积与

样品厚度的关系。从图 9a 可看出，随着噪声强度

的增加，PPS40 每种厚度对应的峰面积逐渐减小

且变化明显。这是因为 SNIP 方法在迭代过程中

通过对比某道的计数值与附近道址的计数值更新

 

能谱图

真值图

预测图

a

b

c

d

灰度图变彩色图

图 7    SpeNet网络预测结果图

Fig. 7    Prediction results of SpeNet network
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该道址的计数值，不可避免地会受到噪声影响，噪

声强度增加，使得 SNIP 计算得到的本底基线增

加，从而使得扣除基线后全能峰内道址的计数变

小，峰面积逐渐减小。图 9b为 SpeNet方法在不同

噪声背景下得到的相对峰面积与样品厚度关系，

可看到不同噪声强度下的曲线几乎重合，噪声的

增加对于峰面积的影响较小，体现出以 SpeNet 网

络建立的 γ测厚方法有着良好的抗噪性能。

在不同噪声强度下，根据 SNIP 得到的基线扣

除能谱，计算 PPS40 不同厚度样品的峰面积，并与

未添加噪声的峰面积进行对比，计算峰面积变化

率，结果列于表 1，负值表示相比于未添加噪声的

峰面积，添加噪声后所得峰面积减小，因此引起的

变化率为负值，可看到噪声强度越强，引起的峰面

积变化率越大，最大达 0.85%。同理，计算不同噪

声强度下 SpeNet 方法得到的峰面积变化率，结果

列于表 2，可看到，相同噪声强度下每种厚度的峰

面积变化率有正有负，且不同噪声强度下相同厚

度的峰面积变化率也存在有正有负的情况，即峰

面积增加或减小，说明峰面积的变化与噪声强度

几乎无关，并且不同噪声强度下，引起的噪声变化

率相比于 SNIP 来说明显减弱，最大仅 0.049%，体

现出基于深度学习建立的 γ 测厚方法有着优异的

抗噪能力，明显优于传统测厚方法。

 
 

表 1    相比于原始谱的峰面积变化率 (SNIP 方法)
Table 1    Rate of change of peak area compared to original spectrum (SNIP method)

厚度/mm
峰面积变化率/%

Spect_Gauss100 Spect_Gauss300 Spect_Gauss500

13 −0.231 −0.422 −0.765

14 −0.295 −0.605 −0.767

15 −0.251 −0.575 −0.851

16 −0.239 −0.606 −0.739

17 −0.298 −0.530 −0.825

 
 

表 2    相比于原始谱的峰面积变化率 (SpeNet 方法)
Table 2    Rate of change of peak area compared to original spectrum (SpeNet method)

厚度/mm
峰面积变化率/%

Spect_Gauss100 Spect_Gauss300 Spect_Gauss500

13 0.006 −0.016 0.010

14 0.010 −0.010 −0.028

15 −0.016 −0.012 −0.010

16 0.002 −0.043 0.007

17 −0.009 −0.005 −0.049

 
 

3.3　复杂环境下的测厚性能

同样以 PPS40 不同厚度的样品为例，通过给

γ 测厚装置得到的能谱全能峰附近添加新的高斯

峰，模拟其他放射性核素特征峰对厚度测量的影

响，验证本文 γ 测厚方法的复杂核素抗干扰能力，

并与传统方法对比。本研究随机设置 3 个不同高

度、不同位置的高斯峰模拟放射性复杂环境中多

种核素的特征峰，这些核素的特征峰强度不变，表

示这些特征峰强度与样品厚度无关，作为放射性

环境中固有的放射性存在，对测厚产生干扰，能谱

中具体分布如图 10a 所示，峰①为原 γ 能谱中的

散射峰，峰②为原 γ 能谱中241Am 特征峰，峰强度

与样品厚度相关，峰③～⑤为增加的模拟放射性

核素特征峰，对测厚形成干扰。图 10b展示 SpeNet

和 SNIP 方法对能谱的基线扣除结果，可看到两种

方法均可实现对散射峰①的扣除，但 SNIP 方法无

法扣除峰③～⑤，SpeNet 方法则可将这些与测厚

无关的干扰峰有效扣除，有效降低干扰峰的影响，

体现出基于 SpeNet 网络的 γ 测厚方法应用于复杂

放射性环境的优势。

图 10a 中随机添加的峰③～⑤与用于测厚的
241Am 全能峰无重叠，因此这些峰对于241Am 的全
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能峰面积计算影响较小，可通过道址（阈值）选择

过滤掉与厚度测量无关的高斯峰，无法充分体现

SpeNet 扣除干扰峰的优势。因此，进一步设计一

与241Am 全能峰有重叠的高斯峰，添加的高斯峰如

图 11a 中的峰⑥，该峰位于 40～45 道，处于241Am
特征峰的区间内，且峰强度为定值，不随 PPS40 样

品厚度而变化，因此不可避免地对241Am 全能峰内

的计数产生影响，且难以通过阈值选择去除该峰

的影响。SNIP 和 SpeNet 方法的对比结果如图 11
所示，图 11a 所示为 SNIP 选择不同滤波窗大小的

基线扣除结果，图 11b对比 SpeNet与 SNIP的基线

扣除结果。图 11a 可看到，改变 SNIP 方法中滤波

窗的大小，对241Am 全能峰之前的散射峰扣除影响

明显，当 w=53 时可有效去除散射峰①，但对于添

加的高斯峰⑥却无法扣除，表明传统方法对于其

他核素特征峰的抗干扰能力较弱，与此同时，传统

方法需进行人工试验才能确定合适的滤波窗用于

基线扣除 ，体现了传统方法的不足之处。图

11b 通过 SpeNet 与 SNIP 的对比，可看到 SpeN-
e t 除可扣除掉散射峰①外 ，还可有效扣除在

40～45 道添加的高斯峰⑥，体现出该方法对其他

核素的抗干扰能力。从 SpeNet 的网络结构来看，

通过不同网络层级提取输入信息不同级别的特征

信息，网络层数越深，提取信息越高级 [26-27]，从而

在有噪声或有其他核素干扰的情况下，仍能得到

较好的基线扣除能谱，突出深度学习方法在放射

性环境下优异的抗干扰能力，有利于复杂放射性

环境下的 γ厚度测量。
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图 11    不同方法能谱基线扣除结果对比

Fig. 11    Comparison of spectral baseline elimination results by different methods
 

测量 PPS40 不同厚度的样品，得到不同厚度

样品对应的 γ 能谱，在能谱中添加干扰峰⑥，采用

SNIP 和 SpeNet 两种方法进行基线扣除，计算峰面

积，得到峰面积与样品厚度的关系如图 12 所示，

原始谱表示未添加干扰峰得到的峰面积与厚度关

系曲线，SNIP 和 SpeNet 则分别表示两种方法得到

的峰面积与厚度关系曲线。可直观看出，相比于

原始谱，对于相同厚度的样品，基于 SpeNet 的 γ 测
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图 10    不同方法能谱基线扣除结果对比

Fig. 10    Comparison of spectral baseline elimination results by different methods
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厚方法和基于 SNIP 的 γ 测厚方法得到的峰面积

均增加，SpeNet 的峰面积增加小于 SNIP 的结果，

是因为 SpeNet 有效扣除了新增的高斯峰。而由

于高斯峰的存在导致241Am 的全能峰范围内每个

道址计数均相应增加，因此，即使有效扣除高斯

峰，仍会导致全能峰的面积增加，从而高于原始的

全能峰面积。两种方法得到的峰面积及峰面积变

化率结果列于表 3，可看到 SpeNet 方法计算得到

的峰面积最大变化率为 7.58%，优于 SNIP 的结果

33.29%。通过对比同种方法不同厚度的峰面积变

化率可知，SNIP 得到的峰面积变化率随着厚度增

加逐渐增加且造成的峰面积变化明显，峰面积变

化率随着厚度逐渐增加，会逐渐破坏峰面积与样

品厚度的指数关系而无法用于厚度测量，进一步

会导致 γ 测厚方法失效。而 SpeNet 方法的不同厚

度对应的峰面积变化率则变化较小，峰面积变化

率与厚度变化并未呈现正相关，对峰面积与样品

厚度的指数关系影响较小，继续改进 SpeNet 网

络，有望进一步改善峰面积计算结果和提高测厚

方法的稳定性。

 
 

表 3    不同方法峰面积计算结果对比

Table 3    Comparison of peak area results using different methods

厚度/mm 原始峰面积
峰面积 峰面积变化率/%

SNIP SpeNet SNIP SpeNet

13 2 900 060 3 716 428 3 065 312 28.150 5.698

14 2 775 551 3 608 216 2 959 859 30.000 6.640

15 2 677 755 3 530 294 2 870 942 31.838 7.215

16 2 591 899 3 441 025 2 788 397 32.761 7.581

17 2 537 541 3 382 344 2 723 219 33.292 7.317

 
 

3.4　讨论

通过在原始能谱上添加不同程度的高斯噪声

和高斯峰，模拟不同的噪声环境和复杂放射环境

下测得的能谱，利用 SpeNet 和 SNIP 方法进行能

谱基线扣除并计算峰面积，结果均表明 SpeNet 方

法表现出较好的抗噪能力和抗干扰能力，不仅可

将能谱本底去除，还可将与测厚无关的高斯峰有

效扣除，这是传统方法无法做到的。原因在于深

度学习方法在图像分割和图像降噪等领域表现

突出，通过不同深度的层级提取不同层次的特征，

实现较好的目标分割和图像降噪，得到广泛应

用 [12,18-19,28-29]。本文将 γ 能谱转化为灰度图，作为

SpeNet 网络的输入，输出为基线扣除后的能谱灰

度图。网络通过不断训练，不断学习图片中存在

的特征信息，将能谱中的高斯噪声和其他与测厚

无关的高斯峰逐渐识别为图像中存在的噪点，不

断减弱这些噪点在输出灰度图中的灰度值，而将

与 γ 测厚相关的241Am 的全能峰识别为分割目标，

将其保存在输出的灰度图中，实现较为精确地输

出灰度图。随后将输出灰度图转化为 γ 能谱图，

从而得到精确的基线扣除谱。通过将能谱转化为

灰度图，可充分发挥深度学习在目标分割和图像

降噪方面的优势，实现了能谱基线和无关高斯峰

的有效扣除，进而增强了 γ 测厚方法在噪声环境

和复杂放射性环境下的抗噪能力和抗干扰能力，

拓宽了 γ测厚方法的应用领域。 

4　结论

本文基于深度学习网络建立一种新颖的 γ 测

厚方法，利用搭建的伽马测厚装置进行训练和验
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图 12    不同方法的峰面积与样品厚度关系图

Fig. 12    Relationship between peak area and sample thickness
using different methods
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证，并与传统方法进行了对比分析。具体而言，通

过搭建的 γ 测厚装置对多种厚度样品进行测量，

产生足够的能谱数据用于 SpeNet 网络的训练。

以 13～17 mm 厚度的 PPS40 样品为例，测试基于

SpeNet 网络建立的 γ 测厚方法。结果表明，该方

法得到的峰面积与样品厚度关系与传统方法基本

一致，证明了该方法的可行性。在不同厚度 PPS40

样品对应的 γ 能谱上添加不同程度的高斯噪声，

模拟噪声环境下的测量，发现本文建立的 γ 测厚

方法抗噪能力强，最大峰面积变化率仅为 0.049%，

优于传统 SNIP方法得到的结果 0.85%。在能谱上

添加高斯峰模拟其他核素特征峰干扰的研究，证

明了本文建立的 γ 测厚方法可有效扣除添加的高

斯峰，最大峰面积变化率仅 7.58%，优于传统方法

的 33.29%，具有较强的抗干扰能力，体现出该方法

应用于复杂放射环境下的潜力。综上所述，基于

深度学习方法的基线扣除，避免了人工多次调参，

直接得到基线扣除后的 γ 能谱，提高了工作效率。

同时对传统的测厚方法进行了优化，提高了 γ 测

厚方法的抗噪能力和抗干扰能力，为 γ 测厚数据

分析提供了新思路。

 

本研究工作得到了兰州大学超算平台的支

持，在此致以感谢。
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