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Abstract: Oxygen is the most promising non-metallic inhibitor in lead-bismuth cooled fast reactors
(LFRs). The addition of oxygen to the coolant can format a protective oxide layer on the surface of
structural materials, which will effectively alleviate the corrosion of structural materials by the liquid
lead-bismuth eutectic (LBE). LFR is a complex environment characterized by the interaction of multiple
physical fields. For instance, the growth and removal behaviors of the oxide layer are influenced by
various factors such as temperature, oxygen concentration, coolant velocity, and time. Moreover, the
formation of the oxide layer changes the thermal-hydraulic characteristics and neutronics parameters of

the reactor core. Therefore, studying the coupled effects of oxidation corrosion, thermal-hydraulics, and
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neutronics is of paramount importance for the development, design, and safety assessment of LFRs. A
multi-physics framework that couples neutron physics, thermal-hydraulics, and material corrosion was
proposed to investigate the multi-physics coupling characteristics of the fuel assembly in LFRs. Within
the coupling framework, neutronics calculations were performed using the open-source neutron
diffusion equation solver Moltres, thermal-hydraulic calculations were conducted using the Navier-
Stokes module included in the multi-physics object-oriented simulation environment (MOOSE)
platform, and corrosion calculations were carried out using the Seal module developed based on the
MOOSE. The coupling framework involves two types of coupling parameter transfer relationships:
1) The oxidation corrosion field obtains coolant temperature and flow velocity from the thermal-
hydraulic field to compute the oxide layer thickness and transfers the oxide layer thickness to the
thermal-hydraulic field to calculate the convective heat transfer coefficient; 2) The neutron physics field
receives temperature distribution from the thermal-hydraulic field to compute k., neutron flux
distribution and power distribution, and transfers the power distribution to the thermal-hydraulic field
for thermal-hydraulic calculations. In terms of numerical system solving, the coupling framework
employs the concept of directly coupled equations of the three physical fields and solves them using the
Newton-Krylov iteration method. A neutronics-thermal-hydraulics-material coupling problem of a 19-
rod bundle fuel assembly in an LFR was computed using the coupling framework, and the effects of
oxygen concentration and coolant inlet temperature on the temporal variations of key coupling
parameters and the distribution of oxide layers were investigated. The results indicate that under the
benchmark condition, after 10 000 hours of oxidation corrosion, the average thickness of the oxide layer
on the fuel assembly cladding surface is approximately 9.86 pm. The maximum temperature rises of the
fuel and cladding are 13.36 K and 5.63 K, respectively, with a decrease in k. of 7 pcm. Increasing
oxygen concentration is beneficial for inhibiting magnetite dissolution and enhancing the self-repair
ability of the oxide layer, but the promotion effect of increasing oxygen concentration on the growth of
Fe-Cr spinel is limited after reaching a certain concentration. Although raising the coolant inlet
temperature leads to an increase removal rate of magnetite on the inner surface of the cladding at the
center of the assembly, it significantly promotes the growth of Fe-Cr spinel.

Key words: neutronics-thermal-hydraulics-material coupling; oxidation corrosion; lead-bismuth cooled

fast reactor; fuel assembly; multi-physics object-oriented simulation environment
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Table 1 Main parameter of fuel assembly
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Fig. 3 Geometry configuration of fuel assembly
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Fig. 4 Dynamic changes of key coupling parameters over time under standard operating condition
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Fig. 6 Dynamic change of key coupling parameters over time under different oxygen concentrations
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Fig. 8 Dynamic changes of key coupling parameters over time under different inlet temperatures of coolant
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