
 

基于数据驱动的核电站主给水泵故障预测研究

张国辉，骆志平
（中国原子能科学研究院, 北京　102413）

摘要：目前，核电站设备传感器每天都会产生大量的监测数据，但这些数据的利用程度较低，对于利用监

测数据进行核电站重要设备的故障预测研究还处于探索阶段。针对这种情况，本文以核电站主给水泵作

为研究对象，将表征主给水泵运行状态的各类监测数据进行预处理和降维，进而通过多个选定的机器学习

模型预测设备在未来是否会发生故障。通过对预测模型的效果评估发现，长短时记忆网络模型（LSTM模

型）具有较好的预测精度。当模型预测结果超过阈值时发出预警信息，提醒核电站运维人员加强关注，及时采取

故障诊断和维修措施，以有效防止因设备的突然故障停运造成较为严重的后果，保证核电站的安全和经济运行。
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Abstract: At  present,  nuclear  power  plant  equipment  sensors  generate  a  large  amount  of  monitoring
data every day, but the utilization of these data is relatively low. Research on using monitoring data for
fault  prediction  of  important  equipment  in  nuclear  power  plants  is  still  in  the  exploratory  stage.  In
response  to  this  situation,  this  article  takes  the  main  feedwater  pump  of  nuclear  power  plants  as  the
research object, preprocesses the operation status data, reduces the various monitoring data dimensions,
and  then  predicts  whether  the  equipment  will  malfunction  in  the  future  through  multiple  selected
machine learning models. The selected models are Linear model, support vector machine (SVM) model,
and LSTM model.  For  the fault  diagnosis  of  the main feedwater  pump, the discrimination criterion is
that  the  vibration  signal  of  the  feedwater  pump  bearing  exceeds  the  threshold.  When  the  predicted
results of the model exceed the threshold, an early warning message is issued to remind the operation
and  maintenance  personnel  of  the  nuclear  power  plant  to  strengthen  their  attention,  take  timely  fault
diagnosis  and  maintenance  measures,  and  prevent  serious  consequences  caused  by  sudden  equipment
failure  and  shutdown,  which  will  affect  the  safe  operation  of  nuclear  power  plants.  Specifically,  this
study utilized the operating parameters of the main feedwater pump during operation, which are more
than  ten  parameters  other  than  the  vibration  signals  of  the  feedwater  pump  bearings.  Through  a
predictive  model,  the  vibration  situation  of  the  feedwater  pump bearings  was  predicted,  and  the  fault
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status of the main feedwater pump was determined based on the vibration prediction signals to evaluate
whether  the  equipment  can  operate  for  a  long  time.  After  preprocessing  and  feature  selection,  the
selected  dataset  was  trained  and  validated  against  traditional  data  processing  models  and  currently
popular  deep  learning  models.  After  evaluation,  it  is  found  that  the  deep  learning  model  LSTM  has
more accurate prediction results, with mean square error and goodness of fit meeting the required range
and  could  better  fit  the  actual  operation  of  the  equipment.  At  the  same  time,  by  using  the  ridge
regression algorithm, the parameters that have a significant impact on the normal operation of the main
feedwater  pump  can  be  analyzed.  In  the  actual  work  of  the  equipment,  it  can  help  operation  and
maintenance  personnel  find  the  cause  of  faults  and  improve  the  quality  of  equipment  operation  and
maintenance.  The  historical  data  used  in  this  study  mainly  cover  common  typical  faults  of  the  main
feedwater pump. In the future, it is necessary to continue collecting other types of fault data for model
training  and  validation,  so  that  the  model  can  cover  all  possible  faults  that  may  occur  in  the  main
feedwater pump. Overall,  the research prospects for fault prediction of such large-scale equipment are
very broad.
Key words: nuclear power plant; main feedwater pump; machine learning; fault prediction; fitting

核电站主给水泵是非常重要的大型机电设

备，用于向蒸汽发生器输送所需压力和流量的给

水，并且在机组热备用、启动、运行以及停机等工

况下维持蒸汽发生器所需的水位，以保证蒸汽发

生器的可用性，从而导出反应堆功率运行时的热

量和停堆后的余热。主给水系统不执行核安全相

关的功能，但在正常工况下对于一回路热量的导

出至关重要。在失去主给水的情况下，若辅助给

水或启动给水不能正常启动，有可能导致一回路

超温超压。

对于主给水泵，为了保证其安全可靠地运行，

依然采用 20 世纪 90 年代初以来广泛使用的纠正

性维修和预防性维护策略。这两种维护策略无法

在设备故障之前判断出设备的异常运行状态，很

难提前制定适当的维护计划。目前，利用设备运

行监测数据，预警设备的故障情况，在国内外已有

相关研究。2005 年，支持向量机（SVM）模型崭露

头角。与神经网络相比，SVM 无需调参，模型训

练更高效，更易获得全局最优解。委内瑞拉的 Rocco

等[1] 将单分类 SVM 和多分类 SVM 组合成层次结

构的分类器，能够辨识核电系统中暂态过程的异

常。核反应堆浸没在水中以保持冷却，其高温高压

和辐射危害使得无法对压力容器和堆内部件进行

直接的人工定期检查。2017 年，美国的 Chen 等[2]

提出了一种基于朴素贝叶斯数据融合方案和卷积

神经网络（CNN）的核反应堆裂纹检测方法（命名

为 NB-CNN 方法）。该 NB-CNN 方法利用 CNN

提取核反应堆视频中捕获的各个视频帧的视觉特

征，并利用朴素贝叶斯数据融合方案聚合从每个

视频帧中提取的信息。NB-CNN 方法实现了

98.3% 的命中率。深度神经网络（DNN）具有比浅

层神经网络更强的模式识别能力，并且在历史数

据量足够大的情况下其准确率明显更高，DNN 也

已应用于剩余使用寿命（RUL）的预测。韩国的

Utah 等 [3 -4] 对比了包括 KNN（K 近邻算法）、决

策树、随机森林、SVM 在内的传统机器学习与

DNN 对电磁阀剩余寿命的预测性能，证实了深度

的网络结构可以提高模型预测精度。针对长序列

数据进行学习时，常规循环神经网络（RNN）存在

梯度消失和长期依赖问题，而改进 RNN-LSTM 很

大程度上推动了该领域的研究进程。Yang 等 [5-8]

利用 LSTM 对 LOCA、SGTR 和 MSLB 等事故进

行了故障诊断。湖南大学的佘兢克等 [9] 构建了

CNN、LSTM 和卷积 LSTM（ConvLSTM）的组合，

用于核电站冷却剂损失事故（LOCA）的故障诊断

和事故后预测。因 ConvLSTM 具有有效的特征确

定和提取的优点，被应用于 LOCA 案例的分类。

通过 CNN 和 LSTM 的协同提高了预测精度。这

种混合模型被证明是功能性的、准确的和自适应

的，为应急响应提供快速的事故判断和可靠的决

策依据。

核电站主给水泵大量使用各类传感器，以实
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时获取设备的运行状态和健康状态。这些传感器

每时每刻都在产生数据，对于长期运行的设备，将

会积累大量的设备监测数据，目前这些数据还无

法得到有效利用 [10 ]，未应用于设备的预测性维

护。若对这些监测数据进行处理，再通过合适的

数据驱动模型来预测设备的运行状态，确定何时

需要维护操作，在设备故障之前维修人员提前介

入维护，能极大程度地提高设备的运行可靠性，同

时降低维护成本、缩短意外停机时间并延长设备

的使用寿命，更能有效提升核电站的安全水平。

本研究选取目前已较为成熟的 3 种预测模

型，即 Linear 模型（线性回归模型）、SVM 模型以

及 LSTM 模型，分别对主给水泵故障情况进行预

测，并通过均方误差和拟合优度对模型进行精度

判别，以确定合适的故障预测模型。实际应用中，

利用历史数据的先验信息，使选定的模型能够在

设备故障前的一段时间内提前预警，帮助电厂作

出运维方式的决策，进而降低设备突然发生故障

后导致的风险和损失。 

1　故障预测思路

核电站每台机组设置 3 台主给水泵，每台主

给水泵组包括前置泵、给水泵、电动机、齿轮箱等

部件，主给水泵结构示意图如图 1 所示。电动机

带动左侧的前置泵，右侧连接齿轮箱，通过齿轮箱

升速后带动给水泵旋转供水。主给水泵运行期

间，监视其运行状态的传感器种类和数量较多，如

机械密封循环液温度、轴承金属温度、齿轮箱轴

承金属温度、前置泵轴承振动、电机定子绕组温

度、电机冷却装置进风温度、泵转速、润滑油压力

和温度、传输介质温度、给水泵轴承振动等 16 个

监测参数，监测点如图 1中各箭头所指位置。

 
 

电机电流和定子温度

循环液温度 冷却装置进风温度
出口压力给水温度

轴承温度和振动

轴承温度和振动

轴承温度 转速

前置泵 主给水泵组电动机 齿轮箱 给水泵

图 1    主给水泵结构示意图及监测参数

Fig. 1    Structural diagram of main feedwater pump and monitoring parameters
 

对于主给水泵的故障判别，采用给水泵轴承

振动信号超过阈值作为判别标准，该信号的测点

如图 1 中轴承温度和振动箭头所指位置。在转动

机械设备中，设备振动信号中包含了较为丰富的

故障信息，任何机械设备在运转中若出现了内部

故障，大多时故障会体现在振动异常。因此，对于

旋转机械设备，利用振动监测信号变化对设备故

障状态判别是当前国内外普遍应用的方法 [11-12]。

本研究利用主给水泵运行期间的运行参数，

这些参数为除给水泵轴承振动信号以外的其他十

多个参数，通过模型预测给水泵轴承的振动情况，

并根据振动预测信号判断主给水泵的故障状态，

以评估设备是否可长期运行。在预测模型中，无

需考虑给水泵轴承振动信号与其他监测参数之间

的物理机理，而是将监测参数作为输入信号输入

预测模型，将模型预测值和给水泵轴承振动实测

信号比较，以训练和验证预测模型。获得精度满

足要求的预测模型之后，利用历史监测数据即可

预测下一阶段的给水泵轴承振动信号。预测模型

能预测多远时刻的振动信号，需要调整模型参数

不断验证。 

2　预测模型 

2.1　模型介绍

1） Linear模型

线性回归是一种简单且成熟的数据分析技

术，可以利用相关的已知数据集来预测某个变量

的值，它以数学方式将因变量和自变量建模为线

性方程，建模速度快，计算简单，对于大量数据仍

能得到较快的计算速度。但也存在不能处理非线
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性问题以及预测结果误差较大的缺点。在实际应

用方面，Linear 模型可用便于理解的数学公式来

预测事物的变化，如对于工厂产生的大量原始数

据，可通过 Linear 模型对其进行分析，得出能指导

生产和管理的有用结论。许多行业的从业人员均

可使用线性回归进行初步数据分析并预测未来的

发展趋势。

对于数据变量 x 和 y，当只用 1 个 x 来预测 y

时，就是一元线性回归。可列出如下方程：

y(x)＝ωx+b （1）

对于给定的参数 ω 和 b，该方程在坐标系内

为一条直线。对于散落在坐标系内的数据点，一

元线性回归就是在找 1 条直线来尽可能拟合这些

数据点。

· · ·如果 x 包括 n 个属性，即 x＝（x1；x2；    ；xn），

其中 xi 代表 x 的第 i 个属性值，Linear 模型可表示

为通过一个线性组合来进行预测的方程，即：

y (x) = ω1 x1+ω2 x2+ · · ·+ωn xn+b （2）

一般用向量形式表示：

y (x) = ωT x+ b （3）

· · ·其中，ω＝（ω1；ω2；    ；ωn）。ωi 值的大小反映了对

应属性的重要程度。

以上方程就代表多元线性回归。

2） SVM模型

SVM 模型是一种二分类模型，在分类和回归

问题中有广泛的应用。其基本模型是定义在特征

空间上的间隔最大的线性分类器，即通过间隔最

大化原则进行分类。通过核函数的选择，SVM 模

型可以处理非线性问题，还能处理高维数据，泛化

能力较强，具有较好的鲁棒性和可解释性等。但

SVM 模型也存在缺点，如计算复杂度高、对噪声

数据敏感等，使用 SVM 算法进行数据分析前，需

要对数据进行预处理，去除噪声数据，保证数据的

质量。

3） LSTM模型

LSTM 模型本质上是一种改进形式的 RNN 模

型。RNN 模型在训练过程中会出现梯度消失的

问题，即当输入的序列数据长度过长时，距离当前

时刻较远的数据的作用将被弱化甚至完全被覆

盖 ，进而无法学习之前较远时刻的序列数据。

LSTM 模型在 RNN 模型的基础上通过门控单元

（Gates）来解决 RNN 出现的梯度消失问题，使得

LSTM 模型可以真正有效地学习更长的时间序

列。在 RNN 模型的结构基础上，LSTM 模型增加

了 3 个门控单元，分别为输入门（Input Gate）、输

出门（Output Gate）和遗忘门（Forget Gate），再通过

设定权值控制各门控单元的作用。如输入门通过

激活函数 sigmoid 决定哪些信息将会被新输入，输

出门根据当前时刻输入、上一时刻隐藏层的状态

以及当前时刻最终的记忆单元状态决定该时刻的

输出，遗忘门通过激活函数 sigmoid 决定哪些信息

将会被遗忘。在时刻 t，LSTM 模型结构内部运算

公式如下：

ft = sigmoid(W f [ht−1, xt]+b f ) （4）

it = sigmoid(Wi [ht−1, xt]+bi) （5）

ot = sigmoid(Wo [ht−1, xt]+bo) （6）

c′t = tanh(Wc [ht−1, xt]+bc) （7）

ct = ftct−1+ itc′t （8）

ht = ot tanh(ct) （9）

c′t

其中：ft、it、ot 分别为遗忘门、输入门和输出门的

输出；W*为递归连接权重；b*为偏置量；    为当前

输入的记忆单元状态； c t 为当前时刻最终的记

忆单元状态；xt 为当前时刻的输入向量；ht－1 为上

一时刻的输出向量；h t 为当前时刻的输出向量；

 

开始

主给水泵监测数据采集

数据预处理

（缺失值填补、降噪、归一化等）

预测模型训练和验证

模型精度满
足要求?

指标评估

模型

故障预警

结束

数据关键特征获取

是

否

图 2    故障预测流程

Fig. 2    Fault prediction process
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sigmoid和 tanh为激活函数。

LSTM模型的结构如图 3所示。

 
 

ct−1 ct

ht−1

xt

ft it c't ot

σ  σ  tanh σ  

tanh

ht

图 3    LSTM单元结构
Fig. 3    Schematic diagram of LSTM unit

  
2.2　模型评估和故障预警

将采集得到的数据集分为训练集和验证集，

训练集用于构建模型，确定模型中的各类参数，验

证集用来验证模型预测结果的误差大小，根据误

差继续优化预测模型。本研究采用均方误差

（MSE）、平均绝对误差（MAE）以及拟合优度（R2）

这 3 个指标来验证模型的精度和泛化能力。

MSE 的值越小，说明模型的预测结果越接近真实

值，同时 R2 值越接近 1，表明模型的拟合效果越

好。对于主给水泵，一些监测数据可能在某个时

间点有较大的波动，但总体上会以监测数据平均

趋势变化为判断依据，因此选择 MAE 作为辅助评

估指标以减小离群点的影响[13]。

在实时预测中，需通过提前选定阈值的方法

来识别异常信号。对于主给水泵，常用振动绝对标

准 ISO2372 判断运行状态，一般限值为 7.1 mm/s。
但主给水泵在实际的长期运行期间其轴承振动不

能太高，应取一个低于限值的值 A 为预警值，A 由

运维经验确定。当某一时刻，如果给水泵轴承振

动预测值大于 A，系统发出报警，达到提前预警设

备故障的目的[14]。 

3　监测数据采集和处理 

3.1　数据采集

从某核电厂主给水系统主给水泵 A 运行监测

数据中选取一个时间段的数据作为原始数据集，

数据集的起止时间为 2023 年 5 月 23 日 18:12 至

2023 年 6 月 5 日 19:05，数据采集间隔为 100 ms，
其中包括主给水泵正常运行期间振动正常和故障

振动的数据点，故障主要包括转子偏心、轴承松

动、泵基础和支架缺陷、轴承润滑油型号不合适、

机封循环液温度过高或过低等。从以上时段的数

据中选取 88 组数据，每组数据为 1 个 150 s 的连

续数据段，采样率为 10 Hz，包括 1 500 个数据点。

其中 68 组数据用于训练模型，作为训练集，20 组

数据用于验证模型，作为验证集。 

3.2　数据处理

对于从主给水泵各传感器采集到的运行数

据，由于监测设备或数据采集系统的因素，可能存

在异常值或缺失值，如对这些数据不进行清洗处

理，可能会影响模型计算的精度。因此，要通过缺

失值填补、小波包降噪以及归一化处理等处理方

法提高数据质量，保证数据的准确性和完整性。

同时，主给水泵作为重要的大型机电设备，不同类

别的监测数据较多，影响设备运行的因素较多，而

各因素的影响程度却不同，因此，还需要对相关的

信号降维，去除相关性较小的影响因素，从而降低

模型复杂度，有效减少计算量[15]。 

3.3　数据关键特征获取

对于主给水泵的十多个运行监测参数，其中

部分参数与给水泵振动信号之间的内在联系微小

甚至没有。利用线性回归和岭回归收缩方法，对

预测模型输入参数进行选择并排除多重共线性参

数，从而降低预测模型的输入维度，获取数据关键

特征，以得到较高精度的预测模型[16]。通过判别，

在给水流量一定的情况下，得出如下 7 个参数的

重要程度较高：机械密封循环液温度（T1）、止推轴

承非驱动端金属温度（T2）、前置泵轴承体振动

（V）、泵转速（S）、给水泵径向轴承金属温度（T3）、

润滑油温度（T4）以及给水温度（T5），如表 1 所列，

其中 ID指重要性程度。

 
 

表 1    归一化的相对重要性因子

Table 1    Normalized relative importance factor

序号 参数 ID

1 T1 0.05

2 T2 0.05

3 V 0.145

4 S 0.053

5 T3 0.054

6 T4 0.054

7 T5 0.05
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4　模型预测 

4.1　预测指标评估

利用以上降维后的数据集，对 Linear 模型、

SVM 模型以及 LSTM 模型分别进行训练，得到最

终的预测模型，其中 LSTM 模型的迭代次数接近

100 次。本文利用验证数据集中的 1 组故障数据

对模型进行测试，主要评估均方误差 MSE、平均

绝对误差 MAE 以及拟合优度 R2 这 3 个指标。具

体指标数值如表 2所列。

  
表 2    3 种预测模型的 MSE、MAE 和 R2

Table 2    MSE, MAE and R2 of three prediction models

预测模型 MSE MAE R2

Linear 0.252 456 0.197 234 0.695

SVM 0.225 064 0.181 136 0.803

LSTM 0.089 662 0.074 504 0.948

  

4.2　实际预测效果

综上可见，相较于传统的 Linear 模型和 SVM

模型，LSTM 模型在均方误差和拟合优度两个方

面具有明显优势。LSTM 模型具有更高的精确度

和更优的拟合度，预测的数值更接近真实值，同时

离散点对模型的精度影响也相对较小。3 个模型

的预测效果如图 4 所示。从图 4 可看出，LSTM 模

型的预测值与真实值的拟合度明显优于 Linear 模

型和 SVM 模型，也证明利用 LSTM 模型对长时间

序列数据的处理存在优势。 

5　总结

本文选取核电站主给水泵作为研究对象，利

用影响设备运行的各类监测数据，通过一定的模

型对其运行情况进行预测。以主给水泵轴承振动

超标作为设备故障的判断依据，当模型预测的结

果超过阈值时发出预警信息，提醒核电站运维人

员加强关注，及时采取故障诊断和维修措施，防止

因设备的突然故障停运造成较为严重的后果，影

响核电站的安全和经济运行。选取的数据集经过

预处理和特征选取后，对传统的数据处理模型和

目前流行的深度学习模型进行训练和验证，评估

后发现深度学习模型 LSTM 的预测结果更精确，

均方误差小于 0.1，拟合优度大于 0.9，能较好地拟

合设备的实际运行情况。同时通过岭回归算法，

分析出对主给水泵正常运行影响较大的参数，在

设备实际运行中，可以帮助运维人员查找故障原

因，提高设备的运行和维护质量。

在设备的实际运行过程中，实时预测设备的

故障状态并提前发出故障预警信号，对于核电站

的安全运行和经济至关重要。而目前，现有的研

究大多是关于故障诊断方面的，对于核电站设备

的故障预测研究并不多见，尤其是涉及核电站大

型机电设备的故障预测研究更少，其原因主要是

这类设备结构较为复杂，影响因素众多，同时用于

研究的故障数据难以收集。本研究所利用的历史

数据主要覆盖主给水泵常见的典型故障，后续需

要继续收集其他类型的故障数据用以模型的训练

和验证，以使模型能覆盖主给水泵可能发生的所

有故障。
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