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Abstract: The exploration of flow-induced vibration in fuel rods is of utmost importance as it plays a
pivotal role in comprehending and mitigating factors that contribute to fuel failure and reactor
shutdown. This understanding is crucial for advancing the nuclear energy industry. To unravel the
intricacies of this complex phenomenon, a sophisticated high-fidelity finite element model of fuel rods
was meticulously constructed. This model serves as the cornerstone for a computational analysis of
flow-induced vibration responses utilizing ANSYS Batch, firmly roots in the principles of random
vibration theory. In the pursuit of a profound understanding, support stiffness values to simulate and
scrutinize diverse scenarios that fuel rods might encounter were systematically varied. The outcomes of

these simulations were meticulously compiled to establish a comprehensive database of flow-induced
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vibration responses. This database stands as a valuable resource for future research endeavors and
engineering applications within the nuclear energy domain. Taking a step forward, an innovative
approach was adopted to streamline the analysis process. Leveraging the snapshot matrix derived from
the extensive database, a high-fidelity reduced-order model (ROM) was developed. Two data-driven
methodologies, namely proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD) methods, were employed to construct the ROM. This ROM enables the rapid reconstruction of
flow-induced vibration responses, facilitating efficient analysis and decision-making in real-world
applications. A critical facet of this paper involves a comparative analysis of the reconstruction
effectiveness of fuel rod flow-induced vibration responses using both the POD and DMD methods. The
results of this comparison reveal that, when considering the reconstruction of vibration responses with
the same number of modes, the POD method outperforms the DMD method. This finding underscores
the importance of selecting appropriate methodologies based on specific objectives and computational
efficiency. Furthermore, the results indicate that the DMD method excels not only in efficiently
reconstructing the vibration responses of fuel rods but also offers the unique capability to assess the
stability of each DMD mode. This dual functionality enhances the overall diagnostic capabilities of the
DMD method, providing valuable insights into the dynamic behavior and potential instabilities of the
fuel rod system. In conclusion, the exhaustive investigation outlined in this paper not only significantly
contributes to the understanding of flow-induced vibration characteristics in fuel rods but also provides
a robust framework for developing advanced models and methodologies for future research and
practical applications in the nuclear energy industry. The comprehensive nature of our approach ensures
that our findings are not only insightful but also applicable in shaping the future of nuclear energy
technology.
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