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Abstract: The compact design of the marine nuclear power reactor results in a significant reduction in
the size of the main equipment, particularly the steam generator. The primary steam-water separator is
the core component in this regard. The swirl vane separator is the primary separator in the steam-water
separator, responsible for more than 80% of the steam-water separation task. The performance of the

marine nuclear power system directly affects its safety and economy. The primary focus of this study

I 5 H #3: 2023-12-06; & [8] H #3: 2024-03-12
BESHH: BFEARP¥E4 (51906147, 52376145); 1 HARE 4 (21ZR1430900)
*BIEEE N #


https://doi.org/10.7538/yzk.2023.youxian.0848

51031

centered on the swirl vane separator, employing the Euler-Euler two-phase flow model in conjunction
with the RNG k-¢ turbulent flow model. Furthermore, an additional inertia force resulting from the
rolling motion was integrated into the momentum equation as a source term using user-defined
functions (UDF). The impact of varying gravity components was considered, leading to the
development of a three-dimensional numerical computational model to analyze the flow and separation
of steam and water within the separator. The impact of varying rolling angle and rolling period on the
flow properties and operational efficiency of the separator was methodically investigated. The results
indicate that the turbulent mixing of the steam-water two-phase fluid within the separator is enhanced
by the rolling motion, leading to a chaotic pressure field, velocity field, and distribution of liquid
volume fraction. The critical state is observed when the rolling angle reaches 40° and the rolling period
is 2 s. This critical state causes fluid backflow in different parts of the separator, greatly affecting the
effectiveness of separating the two-phase flow. The additional inertia force from the rolling motion
results in periodic pressure and velocity fluctuations within the separator, with a phase delay of one-
quarter period compared to the separator’s motion. In the near-wall region of the separation cylinder, the
liquid volume fraction reaches its peak when the separator is at its maximum inclination angle. The
periodic changes in separation efficiency follow a sinusoidal pattern. Before reaching the critical
condition, the variation in separation efficiency corresponds with the rolling motion of the separator.
The influence on the separation performance becomes more pronounced with higher rolling magnitude
and shorter rolling period.

Key words: swirl vane separator; rolling motion; flow field; separation performance; additional inertia
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Fig. 1 Full-scale geometric model of swirl vane separator
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Fig.2 Scheme of ship motion under ocean condition
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Fig. 8 Pressure distribution cloud in a rolling motion period
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— 51, 0,=40°, T=2s T.I 5 6,=30°, 7=8 s 1.
AHEL AT R B, 1 e RAE T T 7 871 Pa, 3X & HH
T PN EB U A AE AR S R [ il 4R, 3B 4y
T 6 1 1) T 1 20 6B A Ak Sy It A TR B, TR UG R 42
12 BB Z 53 B A R R A
32 HEEG

1) FRAZ S T PN VR S R AR A A

Bl 10 78 8 T Case2(j,,,=5.27 m/s, 0,,=40°,
T=4 s) AR S AR 1 AR RN B 281k .
H T U i 1 A T AR A, R R A A
O FEJE R I K, I 78 4 BE VR I T IL A, 4 AE
3 B FAT AT o Hh s 0 2R 3 1 DR ARG R 9 X, A1
I X T R BE B, R T S 1 e e B
HEAEH . B 10a H, FRAE ST VO SR B
JE Ko v A3 A% 8 Wit Xk Al Bl et B AR, [ B
i PN VR S I SR U U Bl v A A R
TEFEAZE R (), v s (R 2 i X 1) A i, 22
AR TR S ST S A R T A U T, R R

T A7 A0 AR 1) 5 A A B 1/4 R0 a0 st o R A A
R B IF A W5 172 Jal 30 2], v 2 1 e O
DX % B8 A 2 4 1) 7 AR 30 e K A BE AR, A ) B
TET 0 T A R AT T 2 M5 374 J 0TI 22 i R
B JEE A W 1] ZE AR P 10b Sy R 4B T VAR R
JEE O3, S i VAR AR T ] — A i o7 L ) 3k
HAMIE o A8 ZE 4 e v, SR AT 53 7 ] 72 BE T
PN B MOR . e R B vp, B T 2 B e
BE T AR R 5 e A R TR A, 0
ok PALPCR 3 J3E A 1) Jo S 30 sl ) i I e
Bn gy 14 JI, 7 A e A B0 R R, B
(1 o8 428 J) U368 745 70 1 e 3 2 A5 B, i 7 4
T3 RIT (A 1O OR S2 Pz Sl B2 /N T 00 g
H SRR EUE . BIRRI, o) v is 3 2 iR
IR A ik 221, v 2 AT 3 DX e R A A MR
2)) T A2 T B0 R B 3 A1 ) )
11 71 H AN [R) 425 428 Jo) 300 A0 428 428 W 0 2R AR T
G 1 g PN PO R o A L (35O n T I )



5103

PR A AR AR AR T B i 320 1 4 0 M AR B B E AL

2133

a  HE/(msTh
19.7
18.3
16.9
15.5
14.1
12.7
11.3
9.8
8.4
7.0
5.6
4.2
2.8
1.4
0.0

T FEAET I BT BT BT BT
=12s =135 =14s t=15s t=16s
nT (nt0.25)T (n+0.50)T (nt0.75)T (nt+1.00)T
RO FEAETI BT FEAE T FEE LU R
t—125 =135 =14s =15s =16s
b O/ (mesTh (nt0.25)T (n+0.50)T (n+0.75)T (n+1.00)T

100080

R /(mesh)

s-1-1-7-1.1.0

O/ (mesTh

y—075m|52© < ‘ @

Oy

a——— "3 T 7 PORE R B A AT (x=0 mm &b ) 5 b—— % 78 1 AR A B A
10 FRAEJE N RAH SR E A s

Fig. 10 Vapor velocity magnitude distribution cloud in a rolling motion period

Ab, n>0) o N 11 Fras, o R S AR 7E O A
Je A PN £ 7 A IR A RS R B, ELRSh T )

5B AR AR R, B A T DA, i
5 Y R X B R Sy B A e M RE T AL,
Wi 5 Bl 1 S A B KA 1) 4y B R PO AR Y
2 RO SRR E e KO ISP TR U PN
FEARURAH . i BB R S 0 . 2 (R B
Ko FRAE RIS, R S A 1) B 45 T ) Y
N R R R ST Y N k2 A
L, CYFRAR AR IR R 6,400, T=2 s I}, YUK AR I
PRI IR L 37 7™ EE AL, B 3 Ak LR [
X, % TN IR 0 B 2% AR T R AR i i 5
S5 (AR ST LA A B8 i 1 Y 1370 30 6 e HE B )

WIVEWE S . 43 B ROR S IR G A R B N L A
Qb [T A B R AR AR e E T R RIE B T
(I S T ) o
33 WHEERGBEH

1) $FA2 S 101 PR VBOAR AR R A3 451 7 Ak R A

K12 75 H T80 Case2 (jyi=5.27 m/s, 6,=40°,
T=4 s) TR ABR TRy BULE 1 S FR42 5 0 N i A2 1k
B0, A& 12a ATHL FERRP) (=12 s), T
LA 52 B R ISR g K ) Ik A5 A RE Y S e, fif
R TE LGS 220) 7 5 £ A B TR B0 30 VR 53 2 2 2 )
B S, A DU YRR AR FR Ay 0 2 1 20 5 Bl 43 15 4 1)
ZEFRAR, VIO S H T IR 1) ZE R, RS B A s
B E e 22 v I 20 (=13 ), 43 85 0 22 O AR PR Ry



2134
g/ (mes ") R (mes™)

19.7 19.5

I 18.3 I 18.1

f 169 16.7
15.5 153
14.1 14.0
12.7 12.6
11.3 11.2
9.9 S 9.8
8.4 'y /;;;% 8.4
7.0 i 7.0
TS
by A | >3
1.4 1.4
0.0 0.0
6,,=30°, T=8 s 0,=30°, T=4 s

B/ (mes) e (mes ™

19.5 20.0
18.1 I 18.5
167 17.1
153 15.7
13.9 14.3
12.5 12.8
11.1 114
9.8 10.0
8.4 8.6
7.0 7.1
5.6 { 5.7
i S E
1.4 1.4
0.0 0.0
0,,=10°, T=2's 0,,=20°, T=2's

HE/(mes ™
19.8

I 184
17.0

15.6

14.1
12.7

113
9.9 PR
8.5 =23

7.1 ¢
5.7 P
42 .

)8 by ER)

S
-
9.7 O =
6.9
5.5

BT EEX3

(LR

X1

6,=40°, T=2 s

a—— R IR It bR R BT

Bl 11

N Tl B A 0 T PO A X L

Fig. 11 Comparison of vapor velocity magnitude distribution under different rolling conditions
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