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Abstract: To address the need for rapid acquisition of gamma radiation field information in nuclear
facility sites and digital radiation protection systems, simultaneous localization and mapping (SLAM)
technology was combined with gamma dose detection technology in this paper. This combination aims
to solve the problem of efficiently measuring gamma dose rate radiation fields in indoor scenarios while
ensuring compatibility with digital systems. The study leverages the characteristics of scene sensors,
focusing on visual SLAM (VSLAM) algorithms and methods for synchronizing and locating radiation
measurement data using an RGBD camera. A gamma dose rate measurement device based on VSLAM
was developed, employing an RGBD camera to capture the device motion trajectory and scene

information. The gamma dose rate data was temporally and spatially matched with the trajectory test
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data by utilizing timestamps and the integral path midpoint method. This approach ensures precise
synchronization between the spatial data from the VSLAM system and the temporal data from the
gamma dose measurements. The quality of the scene point cloud, the accuracy of trajectory localization,
and the performance of the gamma dose rate detection module were thoroughly tested. The
measurement efficiency, localization accuracy, and compatibility with digital systems were analyzed at
the experiments conducted at a nuclear facility site. The results show that more than 80% of the
VSLAM scene point cloud matches the reference point cloud with a nearest neighbor distance of less
than 0.2 m. This high level of accuracy in point cloud matching indicates that the VSLAM system can
reliably reconstruct the 3D environment of the nuclear facility. The average matching distance between
the measured trajectory and the motion capture system trajectory is 4.2 cm, with a standard deviation of
0.4 m. This demonstrates the high precision of the trajectory localization achieved by the VSLAM
system. Within a dose rate range of 20 pGy/h to 20 mGy/h, the relative error in dose rate measurement
is less than +£5%, indicating the reliability of the gamma dose detection module. Compared to traditional
measurement methods, the new method improves the measurement efficiency of radiation dose rate
fields by 10 times. This significant enhancement in efficiency can greatly reduce the time and effort
required for radiation monitoring in nuclear facilities. The average matching distance between the
measured trajectory and traditional tracking equipment (total station) was 18 cm, further validating the
accuracy of the SLAM-based approach. Integration with digital systems achieves 3D spatial
interpolation of radiation fields, with a single gamma source localization error of less than 0.8 m. This
integration allows for a comprehensive visualization and analysis of radiation fields, facilitating better
decision-making for radiation protection and safety. The developed VSLAM gamma dose rate
measurement method and corresponding device offer high measurement efficiency, accurate
localization, and good compatibility with digital systems, indicating a broad application prospect in the
field of nuclear safety and radiation protection.
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Fig. 1 Structure of y dose rate radiation field mapping device
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Fig. 2 Radiation mapping workflow diagram
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Fig. 4 Principle of loop closure detection based on pose graph optimization
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Fig. 14 VSLAM vy dose rate rapid measurement device
linked with digital radiation protection system
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