高温液钠与不锈钢界面润湿机制研究

田浪浪^{1,2},马誉高³,张卢腾^{1,2,*},朱怡儒^{1,2},唐思邈^{1,2},马在勇^{1,2},潘良明^{1,2} (1.重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400044;2.重庆大学核工程与核技术系,重庆 400044; 3.中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都 610213)

摘要:钠冷快堆的主要特点是将液态钠作为堆芯冷却剂,因此液态钠与不锈钢固液界面的润湿现象在该堆芯系统中普遍存在。高温液钠在不锈钢界面的润湿性能与结构材料的腐蚀程度、材料自洁以及测量仪器精度等直接相关。本文通过可视化实验和分子动力学数值模拟的方法,针对高温液钠与不锈钢界面的润湿特性开展研究,结果发现:液钠与不锈钢的润湿转捩(接触角 90°)温度在 320~335 ℃ 附近;不锈钢表面的 Cr₂O₃ 层会抑制液钠前驱膜的形成,使得液钠等效润湿半径减小,导致液钠与不锈钢界面润湿性变差;随着温度逐渐升高,液钠与 Cr₂O₃ 层逐渐反应生成 NaCrO₂,使得液钠与不锈钢界面润湿性转好。 关键词:钠冷快堆;液钠;不锈钢;润湿性;接触角

中图分类号: TL34 文献标志码: A 文章编号: 1000-6931(2024)09-1902-10 doi: 10.7538/yzk.2024.youxian.0277

Study on Interface Wetting Mechanism between High-temperature Liquid Sodium and Stainless Steel

TIAN Langlang^{1,2}, MA Yugao³, ZHANG Luteng^{1,2,*}, ZHU Yiru^{1,2},

TANG Simiao^{1,2}, MA Zaiyong^{1,2}, PAN Liangming^{1,2}

(1. Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China; 2. Department of Nuclear Engineering and Technology, Chongqing University, Chongqing 400044, China; 3. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

Abstract: The main feature of the sodium-cooled fast reactor (SFR) is the application of liquid sodium as the coolant. Hence, the wetting phenomenon at the solid-liquid interface between stainless steel and liquid sodium is significant in this reactor system. Solid-liquid interface wettability is one of the important factors affecting the corrosion of solid materials. The better wettability will make liquid sodium more likely to penetrate the stainless steel substrate and react with internal elements, indicating that the material's resistance to liquid sodium corrosion performance is worse. For some moving parts, the worse wettability indicates better self-cleaning properties of the material, which can greatly reduce the cost of cleaning and maintenance. In addition, the testing of some physical instruments is also related to the wettability of the liquid sodium, which is not in full contact with the measuring parts until

收稿日期:2024-04-12;修回日期:2024-05-15

基金项目:国家自然科学基金(12305174):中国博士后科学基金(2023M730397);重庆市自然科学基金(2023NSCQ-BHX0243)

^{*}通信作者:张卢腾

the instrument probe is fully wetted, which can lead to less accurate measurement data. The wettability can be quantitatively characterized by the contact angle. The wetting mechanism of liquid sodium was investigated on the surface of stainless steel flats and Cr2O3-coated stainless steel flats based on experimental measurements and molecular dynamics simulations in this paper. In the experimental part, stepped heating wetting was used to measure the contact angle of liquid sodium at different wetting time and temperatures, and to investigate the effect of chemical reaction between liquid sodium and Cr_2O_3 layer on the surface of stainless steel on the wetting turn and complete wetting temperature at high temperature. In the simulation part, the molecular dynamics method was used to simulate the wetting process of the liquid sodium model on two stainless steel model surfaces with or without the Cr_2O_3 layer under constant wetting conditions, to investigate the effect of the presence of Cr₂O₃ on the surface of stainless steel on the precursor film of liquid sodium as well as the equivalent wetting radius. It is found that the wetting characteristics of liquid sodium on stainless steel surfaces are mainly regulated by temperature and wetting duration. The contact angle decreases with rising temperature and longer time, leading to better wetting effect. The wetting turning temperature and complete wetting temperature of liquid sodium on stainless steel surface are in range of 320-335 °C and 510-530 °C. In addition, it is also found that Cr₂O₃ on the surface of stainless steel will deteriorate the wetting effect of liquid sodium, and the contact angle increases with Cr_2O_3 . The Cr_2O_3 layer will also inhibit the generation of the precursor film of liquid sodium, making the equivalent wetting radius of the liquid sodium decrease. When the liquid sodium and stainless steel surface Cr2O3 react at high temperatures to generate NaCrO2, the liquid sodium wetting turning temperature and complete wetting temperature are reduced, and the wetting effect turns well.

Key words: sodium-cooled fast reactor; liquid sodium; stainless steel; wettability; contact angle

钠冷快堆(SFR)依靠在铀资源上较高的利用 率及嬗变长寿命放射性废物等方面的技术优势[1], 成为最有希望的第4代核能系统之一,近年来持 续受到世界各国的密切关注。SFR 以液态金属钠 作为堆芯冷却剂,因其导热率高、比热容大,使得 它在 SFR 中具有很强的冷却能力[2]。SFR 一般在常 压下运行,反应堆运行时钠的平均温度约为450℃, 而钠的沸点是883℃,因此与堆芯燃料包壳接触 的液钠尚未达到沸点,热量就已经传递到钠池中, 说明液态金属钠作为堆芯冷却剂还具有良好的安 全性[3]。但钠的化学性质较为活泼,构建反应堆 主体需要考虑与高温液钠有较好化学相容性的材 料,以抵抗高温液态金属钠的腐蚀作用[4]。对于 长期接触高温液钠环境的材料,钠腐蚀会导致其 力学性能变差,进而影响反应堆部件的寿命[5-6]。 铁素体马氏体钢和奥氏体不锈钢具有较好的高温 力学性能、辐照稳定性、抗液态金属腐蚀性,同时 具有易于加工制造、价格便宜等优势,因此被选 为 SFR 的结构材料^[7]。

高温液钠与不锈钢表面的润湿现象广泛存在 于 SFR 系统中,并且时刻影响着 SFR 的正常运 作。固液界面的润湿性是影响固体材料腐蚀的重 要因素之一, 润湿性越好, 液钠越容易渗透到不锈 钢基体中与其内部元素发生反应,说明该材料的 耐液钠腐蚀性能越差[8-9]。对于一些活动部件,润 湿性越差则说明该材料的自洁性越好,能极大程 度上减少清洁维护的成本。除此之外,一些物理 仪器的检测也与液钠的润湿性有关,如探针、流 量计及液压表等直接与液钠接触的仪表,在完全 润湿之前,液钠没有完全与测量仪表接触,会导致 测量数据不够准确^[10]。液体工质与固体材料的润 湿性可以用接触角来判定[11]。有学者研究了液钠 在不锈钢上的润湿行为[12-14],发现液钠在不锈钢 平板表面的接触角不仅与温度有关,还与反应时 间有关。Addison 等给出 Fe、Co、Ni 三种元素在 液钠中的润湿性随温度变化的趋势,完全润湿点 都在 200 ℃ 以下[15]。此外,在高温环境下不锈钢 表面容易产生抗腐蚀性的 Cr₂O₃ 薄层, 正是由于 不锈钢表面 Cr₂O₃ 层的存在, 液态金属钠与氧化 物层的接触会使其表面润湿性变差, 无法达到完 全润湿^[16-18]。更有研究表明, 通过对经过液钠润 湿的不锈钢进行 X 射线检测, 发现表面都会生成 稳定的三元氧化物^[19-20]。在以往的实验中, 测量 碱金属润湿性的实验受到技术及设备的限制, 实 验中碱金属受氧气和水污染较严重, 所以相关实 验研究的准确度不够高, 并且没有深入探究不锈 钢表面氧化层对液钠润湿性的影响机制。

本文基于可视化实验以及分子动力学模拟方法,从宏观和微观两个尺度上,综合接触角、前驱 膜以及等效润湿半径等参数来探究高温液钠与不 锈钢表面、高温液钠与存在 Cr₂O₃ 的不锈钢表面 的润湿机制。

1 实验研究

1.1 实验设计

润湿性可视化实验装置如图 1a 所示。装置 总共分为了6个系统,分别为数据采集系统(A)、密 封转移系统(B)、高温加热系统(C)、光源系统(D)、 冷却系统(E)、真空系统(F)。数据采集系统由 CMOS 数字摄像机配备高分辨率变焦式显微镜, 配合光源系统进行可视化拍摄。高温加热炉最高 加热温度可达1600℃。冷却系统用于冷却加热 管管腔两端的真空法兰,保证真空法兰不会因高 温影响其气密性。真空系统配备分子泵,真空度 可达0.1 mPa。密封转移系统如图 1b 所示,由高 温球阀和转移舱组成,用于将从手套箱切好后的 钠工质转移至接触角测量仪中的不锈钢平板上。

图 1 接触角测量装置及密封装置 Fig. 1 Contact angle measuring device and sealing device

钠块通过手套箱切取,考虑钠蒸发和接触角 测量标准的影响,钠块被切成大小为2mm的正方 体。实验中采用规格为49mm×49mm×1mm的 304不锈钢平板。考虑到在实际条件下,高温状态 的不锈钢表面会更容易产生不同程度抗腐蚀性能 的 Cr₂O₃ 层。因此本实验还通过表面磁控溅射的 方法制备了厚度为10、20、50μm Cr₂O₃ 铍层的增 平板,如图 2 所示。可看出,随着 Cr₂O₃ 铍层的增 加,不绣钢表面逐渐变为黄绿色。

实验的加热流程如表1所列,采用阶梯式的 升温方式。其中C代表温度,T代表加热时间, "-121"表示停止加热。实验过程中维持真空度 为0.06 MPa 的氩气环境,尽可能地排除氩气不纯 残留氧气的影响。考虑到液钠依然会被微量氧气 氧化的情况,从常温加热至400℃的过程中不设 置停留点,在400℃以上的高温条件下设置450、500、

图 2 不同厚度 Cr₂O₃ 镀层的不锈钢表面 Fig. 2 Stainless steel surfaces with different thicknesses of Cr₂O₃ coatings

韦 1 实验的加热流程

Table 1 Heating process of experiment					
程序	数值	程序	数值		
C01	14 °C	T07	2 min		
T01	35 min	C08	510 °C		
C02	400 °C	T08	20 min		
T02	2 min	C09	510 °C		
C03	400 °C	Т09	5 min		
T03	5 min	C10	520 °C		
C04	450 °C	T10	520 °C		
T04	2 min	C11	520 °C		
C05	450 °C	T11	5 min		
T05	5 min	C12	530 °C		
C06	500 °C	T12	20 min		
T06	2 min	C13	530 °C		
C07	500 °C	T13	-121		

510、520、530℃作为停留点,进行接触角测量。

实验主要流程如下:首先使用超声波清洗仪 清洗不锈钢平板,将不锈钢平板先后置于无水乙 醇和丙酮中各清洗。使用热风枪吹干不锈钢平板 后,将不锈钢平板水平的放入加热炉陶瓷管中,使 得不锈钢平板置于热电偶的正上方。在手套箱中 切取钠块,放置于密封转移过渡舱内。从手套箱 中取出密封转移装置将其与接触角测量仪的陶瓷 管对接。对加热管道先抽真空,再通入氩气,如此 往复3次。打开球阀,通过转移装置的活动推杆 将钠推至不锈钢平板上。退回活动推杆,关闭密 封转移装置的球阀,将活动推杆卸下,装上物镜 窗。对装好的物镜仓空腔进行抽真空处理,通氩 气使得球阀左右两边腔体气压一致。开启球阀, 调整显微镜倍率至钠块清晰可见时,开启加热炉 进行试验。为保证实验过程中真空法兰的气密性 不受高温影响,所以整个加热过程中冷却水循环 泵为一直开启状态。

1.2 实验结果

液钠在低温加热的过程中,外表面无可避免 地形成1层薄薄的氧化层,这在其他碱金属接触 角实验中也有类似现象^[21]。但随着温度的升高, 外层氧化膜开始破裂后内部流漏出的液钠还来不 及被氧化,展现出液钠在壁面真实的接触角大小, 如图 3 所示。

图 4 为高温液钠在不锈钢表面随温度变化的 润湿过程。在加热到 307 ℃ 时,液钠外层还存在 1层氧化膜,润湿形态尚未发生较大变化。在 325 ℃ 时,液钠外层氧化的硬壳突然破裂,液钠的形态急 剧变化,变成了一个近似的半球形。随着温度的

升高,可明显看出液钠在不锈钢表面的接触角逐 渐减小,这说明液钠在不锈钢表面的润湿性逐渐 增强。当加热温度上升至530℃时,维持时间达 到20min时,液钠在不锈钢平板上几乎完全润湿。

图 5 为高温液钠在镀 20 μm 厚 Cr₂O₃ 的不锈 钢表面随温度变化的润湿过程。到 314 ℃ 时,液 钠底部两侧的三相接触点都出现了不润湿的现 象。当温度到达 332 ℃ 左右时,液态钠与样品的 润湿状态从不润湿转变为润湿。随着温度的升 高,液钠形态更加规则,两边接触角大小接近一 致。在加热至 510 ℃,液钠在不锈钢平板上已完 全润湿,此时图上的微小凸起不润湿的部分为氧 化钠固体和众多腐蚀产物。

图 5 镀 20 μm Cr₂O₃ 不锈钢平板上液钠接触角图像 Fig. 5 Contact angle images of liquid sodium on 20 μm Cr₂O₃ coated stainless steel plate

停止加热后,取出 Cr₂O₃ 镀层不锈钢平板如 图 6 所示,样品表面存在一块黄褐色的圆形区域, 推测是液钠与不锈钢铁元素发生反应而生成的腐 蚀产物和钠被氧化生成的氧化钠固体。将表面凸 出物去除后,底部不锈钢表面如图 6b 所示,液钠 在腐蚀掉表面的 Cr₂O₃ 之后继续向下与其他元素 反应生成了钠-铁-氧的三元氧化物。黄褐色区域 的外围浅绿色的腐蚀产物,显微镜放大 500 倍图像 如图 6c 所示,检测为钠与表面 Cr₂O₃ 反应生成的 三元氧化物亚铬酸钠 NaCrO₂ 结晶固体结构。也 正是由于 NaCrO₂ 物质存在于液钠不锈钢浸润体系 中,导致浸润性随温度变化存在弛豫降低的现象。

图 6 润湿后镀 Cr₂O₃ 的不锈钢表面 Fig. 6 Surface of Cr₂O₃ coated stainless steel plate after wetting

根据实验发现,液钠与不锈钢表面的润湿转 捩主要有物理作用和化学作用。物理层面上,水 平方向上固液界面张力的力平衡方程(即杨氏方 程)见式(1),其中,γ_s、γ₁以及γ_{1s}分别为固体表面 张力、液体表面张力及固液界面张力,θ为接触 角。由此可知,随着温度的升高,液钠表面张力减 小,此过程直接导致液钠在不锈钢表面上接触角 出现由大到小的转变。同时在化学层面上,高温 液钠会与不锈钢表面的 Cr₂O₃ 层反应生成 NaCrO₂ (式(2))。实验表明,该反应促进液钠和金属铁的 直接接触,使得液钠在不锈钢平面上的润湿发生 转变。

$$\gamma_{\rm s} = \gamma_{\rm ls} + \gamma_{\rm l} \cos \theta \tag{1}$$

$$3Na + 2Cr_2O_3 \longrightarrow 3NaCrO_2 + Cr$$
 (2)

对其他厚度 Cr₂O₃ 镀层的不锈钢平板进行上 述加热润湿实验,得到的润湿图像通过高温接触 角测量系统软件进行接触角拟合。该系统采用圆 环拟合法(40°以下)、椭圆拟合法(40°~120°)以 及 Young-Lapalacer 拟合法(120°以上)进行精确拟 合,拟合图像如图 7 所示,得到的左右接触角取平 均值即该温度下液钠在不锈钢表面上的接触角 大小。

首先将不同温度下液钠在无 Cr₂O₃ 层不锈钢 表面的接触角数据与文献中 Hodkin^[12]和 Bader^[14]

图 7 接触角拟合图 Fig. 7 Contact angle fitting plot

的实验数据对比如图 8 所示。可看出,本实验得 到的润湿趋势在 300 ℃ 以下时与 Hodkin 结果相 似,在 300 ℃ 以上时与 Bader 结果较为接近。本 实验的接触角转捩温度约为 335 ℃,介于 Hodkin (275 ℃)和 Bader(372 ℃)的实验数值之间,三者 都在 530 ℃ 达到完全浸润的状态。在润湿转捩温 度以下,由于表面氧化壳的限制,没有表现出标准 的接触角测量图形,三者实验结果偏差较大。在 转捩温度以上,除 450 ℃ 左右的部分数据点偏差 较大外,其他大部分实验数据与文献值相对偏差 低于 30%。304 不锈钢和 316 不锈钢的整体变化 规律相似,都呈现出先快速下降再缓慢下降最后 再快速下降的趋势。

润湿实验结果如图 9 所示。发现液钠在 4 种

不锈钢表面的润湿转捩点(接触角为90°)、320~ 335°C 附近,460°C 左右接触角可降低到约30°。 当温度达到510~530°C 时,液钠在不锈钢表面可 达到完全润湿。在润湿达到转捩角之前,不锈钢 表面的 Cr₂O₃ 与液钠还未完全进行反应,此时的 Cr₂O₃ 层使得液钠的润湿滞后。随着加热温度的 升高,当达到润湿转捩温度点之后,液钠与 Cr₂O₃ 的反应加剧,生成稳定的三元氧化物 NaCrO₂,浸润性逐渐增强。可看出,在不锈钢表面 的 10 μ m 及 20 μ m 厚 Cr₂O₃ 与高温液钠反应生成 NaCrO₂ 后,该表面与液钠的润湿效果甚至优于无 Cr₂O₃ 层的不锈钢。在不锈钢表面生成 NaCrO₂, 液钠达到完全润湿(接触角为 0°)时的温度提前。 对比液钠在不同厚度 Cr₂O₃ 层上面的润湿情况, 发现 Cr₂O₃ 厚度越厚,达到完全润湿所需的温度

Fig. 9 Variation of contact angle with temperature of liquid sodium on surface of stainless steel with different thicknesses of Cr₂O₃ layer

越高或时间越久,而温度对该化学反应存在直接 驱动。

实际上, 仅凭接触角是不足以完全评定一个 润湿体系的, 固液润湿性体现还有很多, 如润湿半 径、铺展面积以及前驱膜等。实验中液钠铺展过 程会受到残留空气氧化影响, 在高温条件下甚至 会有轻微的蒸发, 所以不易对其他润湿参数进行 精确评估。因此, 本文采用分子动力学方法进行 数值模拟, 从微观层面上对液钠在不锈钢平板表 面有无 Cr₂O₃ 的润湿情况做进一步探究。

2 数值模拟

2.1 润湿建模

钠液滴和不锈钢表面采用 LAMMPS^[22]进行 建模,对于 Cr₂O₃ 层,先采用 MS(materials studio) 软件进行建模后,在 LAMMPS 进行与不锈钢壁面 的组合。建模时,相比于钠液滴的建模尺寸,底部 壁面长宽足够大,以保证液滴在接近完全铺展的 情况下与边界仍能保持足够的距离,避免周期性 边界中原子的影响。

润湿模型如图 10 所示。图 10a、b 分别为无 Cr₂O₃ 层和镀 Cr₂O₃ 层的不锈钢表面,两者的真空 盒子大小均为 460 Å×460 Å×300 Å(1 Å=10⁻¹⁰ m), 不锈钢基底与 Cr₂O₃ 薄层长宽与真空层一致,不 锈钢基底厚 12.5 Å, Cr₂O₃ 薄层厚 3.45 Å。球状钠 液滴的半径均为 50 Å,两个模型中,钠液滴与底部 壁面距离均为 3 Å。不锈钢基底采用铁的单晶按 比例替换原子种类的方式构建,共由 Fe、Cr 以及 Ni 三种元素组成,其组成元素比例为 Fe : Cr : Ni= 7 : 2 : 1。绿色的 Cr₂O₃ 薄层采用 MS 软件内部参 数 构 建 而 成 。在 该 润 湿 体 系 中,不锈钢 与 Cr₂O₃ 壁面均作为刚性原子壁面处理,即原子固定 不动。

在分子动力学模拟体系中,选择适合的势函 数对于整个模型至关重要。对于钠液滴,采用较 为适合于金属原子的 EAM 势函数来描述,该势函 数模型如下:

$$E_{\text{tot}} = \frac{1}{2} \sum_{i \neq j} \phi(r_{ij}) + \sum_{i=1} F_i(\bar{\rho}_i), \rho_i = \sum_{j \neq i} f_j(r_{ij}) \quad (3)$$

式中: $\phi(r_{ij})$ 为*i*处原子和*j*处原子间的对势; r_{ij} 为两原子之间的距离; $F_i(\bar{\rho}_i)$ 为*i*处原子的嵌入能; $\bar{\rho}_i$ 为*i*处原子的背景电子密度, 表示除*i*处原子以

Fig. 10 Two models of wetting systems

外的其他所有原子在i处叠加的电子密度之和。 Nichol等^[23]参照实验数值推导的EAM势函能够 更好地描述钠原子,与钠金属的密度以及熔点等 物性方面有较好的一致性。所以本模拟中的钠液 滴采用该经验势函数进行描述。而对于钠原子与 其他原子之间的势函数,则采用L-J(Lennard-Jones) 势函数来进行描述,该函数模型如下:

$$u_{\text{L-J}} = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
(4)

式中: r 为原子对间的距离; $\varepsilon = \sigma$ 为势能参数, 因 原子的种类而异, σ 的大小反映原子间的平衡距 离, ε 为由能量最低点至能量为0的差, 反映势能 曲线的深度。在不同种类的原子对之间, 可采用 Lorentz-Berthelot 混合规则对其势能参数进行计 算, 即用算术平均计算 σ_{ij} 、几何平均计算 ε_{ij} , 具体 计算式如下:

$$\sigma_{ij} = \frac{1}{2}(\sigma_{ii} + \sigma_{jj}), \varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}}$$
(5)

对于模型中涉及的钠、铁、铬、镍以及氧元素 的 L-J 势函数的参数,目前已有许多学者通过实 验比对等方式进行推导拟合^[24-27]。通过文献得到 模拟体系中所有元素的 ε 与 σ,结合上式得出的模 拟体系中原子对的 L-J 势函数参数列于表 2。

表 2 L-J 势函数参数 Table 2 Parameter of L-J potential function

参数	数值				
	Na-Fe	Na-Cr	Na-Ni	Na-O	
<i>σ</i> , Å	2.701	2.710	2.653	3.298	
ε, eV	0.106 82	0.104 32	0.119 70	0.014 85	

模拟时间步长设置为1 fs,截断半径设置为 10 Å,控温方法采用 Nosé-Hoover 水浴法。在开始 模拟前,先将该模拟体系在 NPT 系综(等温等压 系综)下进行弛豫,待弛豫完成后改用 NVT 系综 (正则系综)开始润湿模拟。对两种润湿模型进行 温度为 326.85 ℃ 及 626.85 ℃ 两个温度工况下的 恒温润湿,润湿时长为 1 ns,详细探究不锈钢表面 Cr₂O₃ 层对液钠润湿的影响。

2.2 模拟结果

高能固体表面与液体的强相互作用润湿体系 固体表面会存在液体前驱膜^[28],如图 11 所示。前 驱膜为名义接触线前端的薄膜(1~2个分子层 厚),它的出现一定程度上说明该润湿模型具有良 好的润湿特性^[29]。

326.85 ℃ 恒温 1 ns 的润湿过程如图 12 所 示。随着润湿时长的增加,液钠在两种模型表面 的接触角逐渐减小,对比发现,液钠在不锈钢模型 表面产生了较为明显的前驱膜。当润湿温度为 626.85 ℃ 时,如图 13 所示,进一步对比发现不锈 钢模型表面的前驱膜更加明显,并且在 1 ns 完全 润湿状态时已完全铺展开。这说明不锈钢表面的 前驱膜受到润湿时长和润湿温度的调控,润湿时 间越长,润湿温度越高,前驱膜铺展得越明显,并 且不锈钢表面的 Cr₂O₃ 层不利于前驱膜的产生。

图 14 为两种模型在 326.85℃ 及 626.85℃ 两种温度下恒温 1 ns 后的最终润湿铺展结果。 无 Cr₂O₃ 镀层模型, 铺展形态近似规则圆形, 钠 原子堆叠层较薄, 铺展形状圆形, 铺展面积较大。 而有 Cr₂O₃ 镀层模型, 铺展形态呈不规则形状, 钠 原子堆叠层较厚, 铺展形状近似椭圆形, 铺展面

图 13 626.85 ℃ 恒温润湿过程

图 14 最终的润湿铺展 Fig. 14 Final wetting spread

积小。通过采用等效半径来量化润湿铺展情况, 结果如图 15 所示,发现在润湿时长达到 1 ns 后, 326.85 ℃ 恒温润湿条件下,液钠在有 Cr₂O₃ 层不 锈钢表面上的等效润湿半径减小了 9.45%,润湿 温度升高至 626.85 ℃ 后,等效润湿半径减小达 13.46%。

3 结论

SFR 中液钠与不锈钢界面的润湿性能时刻影 响着反应堆材料的抗腐蚀性、自洁性以及测量仪 器的准确性。因此,本文采用实验以及分子动力 学模拟的方法,对液钠在不锈钢平板及镀 Cr₂O₃ 不锈钢平板表面的润湿机制进行了研究。实验采 用阶梯式加热润湿,对不同润湿时间及温度段下 液钠的接触角进行测量,探究了高温下液钠与不 锈钢表面 Cr₂O₃ 层化学反应对润湿转捩及完全润 湿温度的影响。数值模拟采用分子动力学方法, 模拟了在恒温润湿条件下液钠模型在有无 Cr₂O₃ 两种不锈钢模型表面上的润湿过程,探究不锈钢 表面 Cr₂O₃ 的存在对液钠前驱膜以及等效润湿半 径的影响。研究结论如下。

 液钠在不锈钢表面的润湿特性主要受温度 与润湿时长调控。润湿温度升高,润湿时间增加, 接触角减小,润湿效果越好。液钠在实验中4种 不锈钢表面的润湿转捩温度在320~335 ℃附近, 完全润湿温度在510~530 ℃之间。在转捩温度 以上,除450℃部分点偏差外,本实验数据与Hodkin 和 Bader 的实验结果大部分相对偏差低于30%。

2)不锈钢表面的 Cr₂O₃ 会使液钠的润湿效果 变差,随着 Cr₂O₃ 增加,接触角增大。Cr₂O₃ 层还 会抑制液钠前驱膜的产生,使得液钠等效润湿半 径减小。当液钠与不锈钢表面 Cr₂O₃ 在高温下反 应生成 NaCrO₂ 后,会使得液钠的润湿转捩温度和 完全润湿温度降低,润湿效果转好。

参考文献:

- AOTO K, DUFOUR P, YANG H, et al. A summary of sodium-cooled fast reactor development[J]. Progress in Nuclear Energy, 2014, 77: 247-265.
- [2] OHSHIMA H, KUBO S. Sodium-cooled fast reactor// Handbook of Generation IV Nuclear Reactors[M]. The Netherlands: Elsevier. 2016: 97-118.
- [3] 徐銤,杨红义. 钠冷快堆及其安全特性[J]. 物理, 2016, 45(9): 561-568.
 XU Mi, YANG Hongyi. Safety properties of sodiumcooled fast reactors[J]. Physics, 2016, 45(9): 561-568(in

Chinese).[4] 柯艺璇,杨文,黄晨,等.面向液态金属冷却堆的高性能

包壳材料研究进展[J]. 材料导报, 2023, 37(增刊 2): 320-327.

KE Yixuan, YANG Wen, HUANG Chen, et al. Research progress of high performance cladding materials for liquid metal cooled reactor[J]. Materials Reports, 2023, 37(Suppl. 2): 320-327(in Chinese).

- [5] LI M, ZENG Z, CHEN W Y. Carburization and decarburization behavior of Grade 91 ferritic-martensitic steel in liquid sodium environments[J]. Journal of Nuclear Materials, 2022, 568: 153870.
- [6] FURUKAWA T, KATO S, YOSHIDA E. Compatibility of FBR materials with sodium[J]. Journal of Nuclear Materials, 2009, 392(2): 249-254.
- [7] MATHEW M D. Evolution of creep resistant 316 stainless steel for sodium cooled fast reactor applications[J]. Transactions of the Indian Institute of Metals, 2010, 63(2): 151-158.
- [8] COUROUAU J, BALBAUD-CÉLÉRIER F, LORENTZ V, et al. Corrosion by liquid sodium of materials for sodium fast reactors: The CORRONa testing device[C]//International Congress on Advances in Nuclear Power Plants 2011. [S. l.]: [s. n.], 2011: 11152
- [9] FU J, TANG M, ZHANG Q. Simple fabrication of hierarchical micro/nanostructure superhydrophobic surface

with stable and superior anticorrosion silicon steel via laser marking treatment[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2020, 35(2): 411-417.

- [10] LIANG N, FU X, ZHANG J, et al. Evaluation of wetting behaviors of liquid sodium on transition metals: An experimental and molecular dynamics simulation study[J]. Materials, 2024, 17(3): 691
- [11] THOMAS Y. An essay on the cohesion of fluids[J]. Philos Trans R Soc London, 1805, 95: 65-87.
- [12] HODKIN E, MORTIMER D, NICHOLAS M. The wetting of some ferrous materials by sodium[M]//Liquid Alkali Metals. Britain: Thomas Telford Publishing, 1973: 167-170.
- [13] CLARK R, KRUGER O. Wetting of nitride fuels and cladding materials by sodium, BMI-1857[R]. US: Battelle Memorial Institute, 1969.
- [14] BADER M, BUSSE C A. Wetting by sodium at high temperatures in pure vapour atmosphere[J]. Journal of Nuclear Materials, 1977, 67(3): 295-300.
- [15] ADDISON C C, IBERSON E, MANNING J. 518: Liquid metals, Part V: The role of oxide films in the wetting of iron, cobalt, and nickel by liquid sodium, and by solutions of Barium and calcium in liquid sodium[R]. Britain: University of Nottingham, 1962.
- [16] ADDISON C C. The chemistry of the liquid alkali metals[M]. Chichester: Wiley, 1984.
- [17] PARK B, HWANG W. A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability[J]. Scripta Materialia, 2016, 113: 118-121.
- [18] FOMIN A, FOMINA M, KOSHURO V, et al. Composite metal oxide coatings on chromium-nickel stainless steel produced by induction heat treatment[J]. Composite Structures, 2019, 229: 111451.
- [19] BARKIA B, AUGER T, COUROUAU J L, et al. Wetting by liquid sodium and fracture path analysis of sodium induced embrittlement of 304L stainless steel[J]. Journal of Materials Research, 2018, 33(2): 121-129.
- [20] BARKER M G, WOOD D J. The corrosion of chromium, iron, and stainless steel in liquid sodium[J]. Journal of the Less Common Metals, 1974, 35(2): 315-323.
- [21] WANG J, WANG H, XIE J, et al. Fundamental study on the wetting property of liquid lithium[J]. Energy Storage Materials, 2018, 14: 345-350.
- [22] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS: A flexible simulation tool for particle-based

materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171.

- [23] NICHOL, ACKLAND. Property trends in simple metals: An empirical potential approach[J]. Physical Review B, 2016, 93(18): 184101.
- [24] MAYO S L, OLAFSON B D, GODDARD W A. DREI-DING: A generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
- [25] HALICIOĞLU T, POUND G M. Calculation of potential energy parameters form crystalline state properties[J]. Physica Status Solidi A, 1975, 30(2): 619-623.
- [26] FILIPPOVA V P, KUNAVIN S A, PUGACHEV M S. Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties

of solid substances[J]. Inorganic Materials: Applied Research, 2015, 6(1): 1-4.

- [27] WILHELM E, BATTINO R. Estimation of lennard-jones
 (6, 12) pair potential parameters from gas solubility data[J]. The Journal of Chemical Physics, 1971, 55(8): 4012-4017.
- [28] AUSSERRÉ D, PICARD A, LÉGER L. Existence and role of the precursor film in the spreading of polymer liquids[J]. Physical Review Letters, 1986, 57(21): 2671-2674.
- [29] 刘禄,朱文琦,林巧力. 高温下前驱膜形成机制的研究 进展[J]. 材料工程, 2022, 50(5): 1-10. LIU Lu, ZHU Wenqi, LIN Qiaoli. Research progress in formation mechanism of precursor film at high temperatures[J]. Journal of Materials Engineering, 2022, 50(5): 1-10(in Chinese).