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Abstract: The interaction of relativistic intense lasers with matter generates complex plasma
environments characterized by extreme conditions, such as high temperatures and densities, which are
critical to fields like laser-driven inertial confinement fusion (ICF), high-energy-density physics, and

strong-field physics. Accurate diagnosis of the hot electron temperature within these plasmas is essential
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for understanding energy coupling mechanisms and the spatiotemporal evolution of the plasma.
However, the intense electromagnetic pulses (EMPs) and high-flux radiation produced during these
interactions pose significant challenges to conventional electronic measurement techniques, often
leading to signal saturation or interference. To address these issues, this study introduces the design,
construction, and calibration of a passive electron stack spectrometer based on image plate (IP),
specifically tailored for diagnosing hot electron temperatures in laser-plasma interactions. The electron
stack spectrometer leverages the advantages of IP, including high radiation sensitivity, a wide dynamic
range, and reusability, making it suitable for environments with strong EMPs. The spectrometer consists
of multiple layers of low-Z absorption materials (e.g., aluminum, titanium, and graphite) interleaved
with BAS-SR-type IPs, chosen for their enhanced sensitivity to electrons over gamma rays. The design
covers an energy range of 0.2 to 4.0 MeV, aligning with the expected electron energies produced by
laser intensities of 10 to 10%* W/cm?. A collimator and shielding ensure precise measurements by
minimizing scattered radiation, and the modular structure allows for accurate alignment with the laser
target. Calibration was performed using a monoenergetic electron beam from a 2 MeV radiofrequency
superconducting accelerator at Peking University. The experimental setup included a beryllium window
for vacuum isolation, an electromagnet that measures the energy of electron beam and a Faraday cup to
measure beam charge, with a plastic scintillator detector cross-referencing the electron flux incident on
the spectrometer. The response matrix, which characterizes the signal-depth distribution for
monoenergetic electrons, was experimentally determined at 1.21 MeV and 1.66 MeV. These
measurements were complemented by Geant4 Monte Carlo simulations to extend the response matrix
across the full 0.2 to 4.0 MeV range with a 0.2 MeV step. The simulations accounted for
electromagnetic interactions, including multiple scattering, ionization, and bremsstrahlung, and were
validated against experimental data, showing good agreement. A key outcome of this work is the
determination of the BAS-SR IP plate energy deposition response coefficient for electrons, measured as
a, (PSL/MeV), using a **Co source with varying titanium absorber thicknesses. Unlike prior studies that
assumed identical response coefficients for electrons and gamma rays, this work highlights potential
differences in coefficients. The experimental and simulated response matrices exhibited consistent
signal-depth profiles, with low-energy electrons (< 0.8 MeV) showing a monotonic signal decrease
with depth, while higher-energy electrons produced a peak signal at deeper layers due to secondary
electron generation. The spectrometer’s upper detection limit was confirmed to be approximately
4.0 MeV, beyond which energy resolution diminishes. The calibrated response matrix enables reliable
reconstruction of electron energy spectra in laser-plasma experiments, providing a robust tool for
diagnosing hot electron temperatures. The spectrometer’s passive, offline measurement approach
eliminates the need for electromagnetic shielding, making it highly adaptable to extreme radiation
environments. This work lays a critical foundation for future applications in laser-plasma diagnostics,
with potential impacts on advancing ICF, high-energy physics, and related technologies. The
combination of experimental calibration and simulation ensures the spectrometer’s accuracy and
versatility, offering a valuable resource for researchers studying relativistic laser-matter interactions.
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Fig. 1 Electron stack spectrometer structure
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Fig.2 Beamline layout for calibration experiment of electron stack spectrometer in accelerator
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Fig. 7 Experimental measurement curve of PSL and calculated curve of deposition energy distribution

for single electron within unit pixel
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Fig. 8 %Co radiation source used in experiment
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Table 2 Structure component of BAS-SR type IP plate
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SN 25 PET 1.4 CoH;04
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Fig. 9 Gray-scale distribution obtained by scanning 60 min
after irradiation and deposited energy distribution at the end
of irradiation (0 moment) calculated by Genat4
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Fig. 10 Energy response coefficient of IP plate
to electron energy deposition
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Table 3 Energy response coefficients of BAS-SR type IP
plate to electron deposition reported by different authors

= a/(PSL/MeV)

Bonnet %13 0.333+0.080

Boutoux %% 0.140+0.028, 0.22+0.05

Singh %20 0.62
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