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Abstract: The offshore nuclear power plant site adopts a secondary circulation cooling water supply
method, equipped with large countercurrent seawater natural ventilation cooling towers. Due to the
effect of cooling towers as tall buildings and the mist plume emitted from cooling towers on the
diffusion of airborne radioactive substances, it is necessary to conduct research on the effect of large
natural ventilation cooling towers on the diffusion of nuclear power plant sites based on the engineering
layout. The effects of cooling towers and their plumes on the diffusion of airborne radioactive
substances through wind tunnel experiments and numerical simulations were summarized in this study.
According to the characteristics of wind distribution on representative nuclear power plant sites, in
combination with the distribution of residential areas, the dominant wind direction E, the secondary

dominant wind direction N, and the wind direction W from the cooling tower to the nuclear island were
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used as the experimental wind directions. The influence of cooling tower air inlet during the experiment
was considered. The site is comprehensively affected by buildings and mountains, and the effect of
buildings such as cooling towers on the site is dominant. No matter whether the thermal plume is
discharged or not, the large natural ventilation cooling tower has entrainment effect, and the airborne
pollutants discharged from the stack will enter the cooling tower through the air inlet at the bottom of
the cooling tower and act as an elevated source for secondary discharge. The entrainment effect with hot
plume discharge is more significant than that without hot plume discharge, and the concentration of
pollutants discharged through the cooling tower significantly increases. The wind tunnel experiment
results show that when the chimney is discharged at a height of 75 meters, the entrainment fraction of
the large natural ventilation cooling tower is 29.8% when it is working, and 1.2% when it is not
working. The numerical simulation results show that when the chimney is discharged at a height of

75 meters, the entrainment fraction of the large natural ventilation cooling tower is 25.28% when it is

working, and 0.75% when it is not working.
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Fig. 1 Schematic diagram of wind tunnel structure
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Fig.3 Comparison of normalized velocities of wind tunnel experiment and

numerical simulation results under E wind direction
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Fig. 4 Comparison of turbulence intensities of wind tunnel experiment and numerical simulation results under E wind direction
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Fig. 8 Velocity varies with height at different positions under wind direction of cooling tower
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Fig. 9 Change of turbulence intensity with height at different positions under wind direction of cooling tower
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Fig. 12 Concentration distribution at different heights inside cooling tower

under E wind direction and chimney discharged at height of 75 m
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Table 1 Entrainment share of cooling tower under E wind
direction and chimney discharged at height of 75 m

N IR X O/(m¥s) %1%
Hek 351 B 3.45%10°* 25.28
AHEZE P ACIERE 4.28x10° 0.75
Hek 351 R S5 3.66x10* 29.80
AHEZE P PR S5 4.80x10° 1.20
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