二氧化硅-海藻酸钙负载磷钨酸铵复合吸附剂 制备及其吸附 Cs⁺的研究

刁新雅^{1,2},范 烨^{1,2},郝乐存^{1,2},赵 昕^{1,2},靳 强^{1,2,*},陈宗元^{1,2},郭治军^{1,2,*}
 (1.兰州大学教育部稀有同位素前沿科学中心,甘肃兰州 73000;
 2.兰州大学核科学与技术学院放射化学与核环境研究所,甘肃兰州 73000)

摘要:高放废液中放射性铯的分离提取对于高放废液的安全处置具有重要意义。针对利用粉末状无机离 子交换剂去除高放废液中Cs⁺所面临的机械强度差、易造成工业柱堵塞的问题,本研究采用溶胶-凝胶法将 磷钨酸铵细晶封装到二氧化硅-海藻酸钙杂化材料中,制备了一种毫米级新型磷钨酸铵复合吸附剂。通过 SEM、FT-IR、XRD、XRF、N₂-吸附/解吸等温线、颗粒强度测定仪等表征手段研究了吸附剂的结构特性,并 结合静态吸附实验和动态柱吸附实验考察了所制备吸附剂在强酸性溶液中对Cs⁺的吸附性能。表征结果 显示,支撑材料中二氧化硅的加入可有效改善海藻酸盐基质的机械性能。Cs⁺在磷钨酸铵复合吸附剂上的 吸附动力学过程符合准二级动力学模型,吸附可在12h内达到平衡。在3.0 mol/L的HNO₃溶液中,该吸附 剂对Cs⁺的静态和动态交换容量分别达22.9 mg/g 和17.3 mg/g。磷钨酸铵复合吸附剂对Cs⁺表现出较高的选 择性,模拟高放废液中Cs⁺与其他金属离子的分离因子均大于42。以上结果表明本文所制备的吸附剂具有 较好的工业应用潜力。

关键词: Cs⁺;磷钨酸铵; 二氧化硅-海藻酸钙杂化基质; 高放废液; 吸附
中图分类号: TL99; O647.32
文献标志码: A
文章编号: 1000-6931(2025)02-0318-09
doi: 10.7538/yzk.2024.youxian.0486

Preparation of Ammonium Phosphotungstate Composite Loaded with Silica-calcium Alginate Hybrid Material and Its Adsorption Performance for Cs⁺

DIAO Xinya^{1,2}, FAN Ye^{1,2}, HAO Lecun^{1,2}, ZHAO Xin^{1,2}, JIN Qiang^{1,2,*},

CHEN Zongyuan^{1,2}, GUO Zhijun^{1,2,*}

(1. MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China;

2. Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China)

Abstract: The separation and extraction of radioactive cesium is of great significance for the safe disposal of high-level liquid waste (HLLW). Although ammonium phosphotungstate (AWP) has shown notable selectivity for Cs⁺ adsorption in HLLW, the micro-crystalline structure and fine powder morphology of AWP limit its industrial application with column separation. Therefore, it is important to

收稿日期:2024-06-06;修回日期:2024-08-01

基金项目:甘肃省科技重大专项(21ZD8JA006);甘肃省科技计划(24JRRA418,22JR5RA480);兰州大学中央高校基本科研业务费专项(1zujbky-2024-18,1zujbky-2023-sth01)

^{*}通信作者:靳强,郭治军

prepare AWP-based adsorbents into a usable form to improve their utilization. In this paper, a novel millimeter-sized AWP-based adsorbent, AWP-CaALG-SiO₂ composite, was prepared by encapsulating the fine crystals of AWP exchanger into a calcium alginate-silica matrix. The prepared composite was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, X-ray fluorescence (XRF), X-ray diffraction (XRD), N₂ adsorption/desorption isotherms and the universal testing machine, and its adsorption performance for Cs⁺ in strong acidic solution was determined using both batch-type and dynamic column experiments in terms of the kinetics, equilibrium capacity and selectivity. The characterization results indicate that the addition of silica in the fabrication significantly improves the mechanical strength of composite in comparison to those without silica. The adsorption of Cs⁺ on AWP-CaALG-SiO₂ composite could reach equilibrium within 12 h, and the adsorption kinetics follows a non-linear pseudo-second order rate equation. The distribution coefficient of Cs⁺ is high even in extreme acidic condition (about 150 mL/g in 8.0 mol/L HNO₃ solution). The adsorption capacity of Cs^+ increases significantly with the increase of initial Cs^+ concentration, and the adsorption of Cs⁺ on AWP-CaALG-SiO₂ composite can be well fitted with the Langmuir model, indicating a homogeneous single-layer adsorption process. The maximum adsorption capacity of AWP-CaALG-SiO₂ composite for Cs⁺ is determined to be 22.9 mg/g with batch-type experiment in 3.0 mol/L HNO₃ solution. In addition, the composite shows excellent selectivity toward Cs⁺ uptake over 8 coexisting metal ions in simulated HLLW, as evidenced by a $K_{\rm d}$ value of 772 mL/g and SF values all above 42. The dynamic column experiment shows that the composite can serve as the stationary phase in columns to effectively remove Cs^+ with the maximum dynamic adsorption capacity of 17.3 mg/g. This work not only develops a granulated AWP-based composite for the selective capture of Cs⁺ from strongly acidic HLLW, but also provids insights into the design of high-mechanical strength ionexchange materials for radiocesium decontamination with their practical applications.

Key words: Cs⁺; ammonium phosphotungstate; silica-calcium alginate hybrid material; high level liquid waste; adsorption

随着核能事业的不断发展,我国在放射性废物治理方面的压力与日俱增。放射性铯同位素是高放废液中常见的放射性核素^[1]。在动力堆乏燃料中,¹³⁷Cs(*t*_{1/2}=30.2 a)是裂变产额最高的放射性核素之一^[2];¹³⁵Cs(*t*_{1/2}=2.3×10⁶ a)的半衰期极长,是高放废物处置的关键核素之一^[3]。另一方面,¹³⁷Cs是重要的辐照源,在医学、科研、农业和工业等领域有广泛应用。因此,放射性铯的选择性分离具有重要意义^[4-6]。

由于高放废液呈强酸性,含盐量高且体系复杂,高选择性地分离 Cs⁺一直是放射化学领域的研究挑战之一。离子交换法是选择性分离放射性Cs⁺的重要方法^[7]。无机离子交换剂的耐辐照性能极佳,且易被固化处理,因此在处理高放废液方面具有独特优势。然而,对 Cs⁺有选择性的无机离子 交换材料通常呈细粉形态,难以直接作为填料应 用于柱分离工艺^[8]。如何制备可用于柱分离、负载选择性无机离子交换材料的Cs⁺吸附剂,是一个 历久弥新的研究课题,受到国内外放射化学研究 人员的重视。研制高选择性的Cs⁺吸附剂不仅是 高放废液管理的现实需要,同时对于放射性铯资 源的利用也具有重要意义。

天然高分子材料海藻酸钠能够与钙、钡、铁、 铝等二价或三价金属阳离子交联,形成具有三维 网状结构的水凝胶微球^[9]。这一成球特性使其成 为制造复合离子交换剂的理想载体。然而传统海 藻酸盐凝胶的内部网络结构较为疏松,容易膨胀 或破碎,限制了其工业化应用^[10]。为克服这一缺 陷,研究人员提出了多种方法来改善海藻酸盐凝 胶的机械性能。其中,将海藻酸盐与其他材料结 合,形成复合凝胶或杂化材料是一种有效的方法^[11]。 无机材料二氧化硅(SiO₂)具有优异的力学强度、 化学稳定性和热稳定性,在海藻酸盐凝胶中引入 二氧化硅纳米粒子或微粒可与海藻酸盐分子链发 生相互作用,形成更紧密的网络结构,使得海藻酸 钙-二氧化硅杂化材料保持球状的同时,其机械性 能也得到显著提升^[12]。此外,将二氧化硅加入海 藻酸盐载体中,还可以改善复合材料与后续放射 性废物固化材料(如水泥固化体和玻璃固化体)的 相容性^[13]。

本文以杂多酸盐磷钨酸铵((NH₄)₃P(W₃O₁₀)₄, AWP)作为无机离子交换材料,采用溶胶-凝胶法 将磷钨酸铵细晶封装到二氧化硅-海藻酸钙基质 中,制备新型Cs⁺吸附剂,并考察该吸附剂的结构 特性及其对Cs⁺的吸附能力以及吸附选择性,为高 放废液中Cs⁺的分离提取提供可供选择的吸附剂。

1 方法

1.1 主要试剂

磷钨酸铵、硝酸铯、海藻酸钠、水玻璃、无水 氯化钙、浓硝酸、氯化钠、硝酸钾等均为国产分析 纯试剂。通过将 CsNO₃ 固体溶解在去离子水 (18.2 MΩ/cm)中,制得浓度为1.00 g/L 的 Cs⁺储备液。

1.2 磷钨酸铵复合吸附剂制备

采用溶胶-凝胶法制备磷钨酸铵复合吸附剂 (AWP-CaALG-SiO₂), 具体过程如下: 1) 室温下, 将 7.07 g Na₂SiO₃·5H₂O 固体颗粒溶解在 20.0 mL 去离子水中,同时将硅酸钠溶液通过强酸性阳离 子交换树脂(732型)得到质量浓度为 5.3% 的原硅 酸溶液;2)在上述溶液中加入1.00g海藻酸钠和 2.00g磷钨酸铵,以550r/min转速搅拌4h混合均 匀(此时磷钨酸铵和二氧化硅的理论质量比为 1:1);3) 控制注射泵以 0.9 mL/min 的注射速度, 使用直径为 0.70 mm 的针孔将上述混合液滴入 0.10 mol/L 氯化钙溶液中(保持针头与氯化钙溶液 之间的距离为5~10 cm),生成白色球状颗粒,静 置 24 h; 4) 分离出白色颗粒,并置于正己烷溶液中 陈化 4 d, 确保颗粒内部组分充分反应; 5) 将制得 的白色球状磷钨酸铵复合吸附剂分别用 0.20 mol/L 盐酸和去离子水洗涤,并于50℃干燥至恒重,收 集备用。

1.3 材料表征

通过全自动比表面积物理吸附仪(N₂-BET, ASAP2020M, 美国麦克仪器公司)测定磷钨酸铵

复合吸附剂的比表面积及孔体积;采用傅里叶变 换红外光谱仪(FT-IR, Nicolet[™] iS50,美国 Thermo Fisher 公司)分析磷钨酸铵粉末及磷钨酸铵复合吸 附剂的化学成分和官能团;采用 X 射线衍射仪(XRD, D/Max 2400,日本理学株式会社)表征材料的晶体 结构及物相组成;利用 X 射线荧光光谱仪(XRF, MagixPW2403,荷兰帕纳科公司)分析磷钨酸铵复 合吸附剂的元素组成;通过场发射扫描电镜(SEM, Apreo S,美国 Thermo Fisher 公司)及能谱仪(EDX, Oxford X-MaxN50 EDX,英国牛津仪器公司)表征 材料的表面形貌以及微区化学成分;采用自动颗 粒强度测定仪(KDZ-1型,山东云唐智能科技有限 公司)测定球状复合吸附剂发生破碎时的最大抗 压强度,进而对其机械性能进行表征。

1.4 吸附实验

1) 静态吸附

准确称取 0.020 g 所制备的 AWP-CaALG-SiO₂ 吸附剂于聚丙烯塑料试管中,加入计算量的 Cs⁺和 HNO₃ 溶液,使试管中 Cs⁺浓度为 25.0~ 1 500.0 mg/L, HNO₃ 浓度维持在 1.0~8.0 mol/L,保 持固液比为 10.0 g/L。在室温下置于恒温振荡器 中振荡一定时间,取上清液并用 Sartorius 膜滤器 (0.22 μ m)过滤。滤液中的 Cs⁺浓度通过电感耦合 等离子体发射光谱仪(ICP-OES, PQ 9000,德国耶 拿分析仪器公司)测量。通过式(1)~(4)计算吸 附率(*R*,%)、吸附量(*q*, mg/g)、吸附分配比(*K*_d, mL/g)和分离因子(SF)。

$$R = \frac{c_0 - c_e}{c_0} \times 100\%$$
(1)

$$q = (c_0 - c_e) \frac{V}{m} \tag{2}$$

$$K_{\rm d} = \frac{c_0 - c_{\rm e}}{c_0} \frac{V}{m} \tag{3}$$

$$SF = \frac{K_{d,Cs}}{K_{d,M}}$$
(4)

其中: c₀和 c_e分别为金属离子的初始浓度和平衡时的液相浓度, mg/L; V为溶液体积, L; m 为吸附剂质量, g; M 代表金属离子。经重复实验和计算, 吸附实验数据的误差小于±5%。

2) 动态吸附

动态吸附实验在 \$ 96 mm×400 mm 的聚氯乙 烯柱中进行。采用湿法装柱将 1.00 g AWP-CaALG-SiO2 吸附剂均匀装入聚氯乙烯柱中。通过蠕动泵

自下而上输送 Cs⁺溶液(500 mg/L), 控制流速为 0.28 mL/min。采用自动部分收集器收集流出液并 测量 Cs⁺浓度。以流出液浓度 c(mol/L)与料液浓 度 $c_0(mol/L)$ 的比值对流出液体积 V(mL)制作穿 透曲线。通过式(5)计算动态吸附量:

$$q = \int_0^V \frac{c_0 - c}{m} \mathrm{d}V \tag{5}$$

2 结果与讨论

2.1 AWP-CaALG-SiO₂ 吸附剂的结构特征

AWP-CaALG-SiO₂吸附剂的实物照片、微观 形貌及EDX 能谱如图 1 所示。由图 1a 可知,所制 备的 AWP-CaALG-SiO₂ 为白色球状颗粒,其形状 规则,直径约 1~2 mm。由图 1b、c 可见,球形吸 附剂表面存在褶皱,具有不规则突起且缝隙较 多。图 1d显示,AWP-CaALG-SiO₂吸附剂中主要 存在 C、Ca、P、C1、N、Mo、W 和 Si 等元素,以 Mo 的元素含量估算得吸附剂中磷钨酸铵的含量 约为 29.0%(质量分数)。

AWP-CaALG-SiO₂吸附剂的 XRD 谱和 FT-IR 谱如图 2 所示。由图 2a 可见, AWP-CaALG-SiO₂ 的主要衍射峰与 AWP 粉末一致, 在 2θ =10.8°、 15.2°、21.6°、26.5°、36.2°处可以观察到 AWP 的特 征衍射峰, 分别对应 AWP 的(110)、(200)、(220)、 (222)、(332) 晶面^[14], 表明本文制得的 AWP- CaALG-SiO₂样品完整保留了 AWP 的晶体结构。 从图 2b 同样可观察到 AWP 的特征吸收峰,在 700~1100 cm⁻¹指纹区内出现典型杂多酸盐 Keggin 结构的特征峰^[14],分别位于1079、983、887、 800 cm⁻¹处。此外,在1406 cm⁻¹处可以观察到 NH₄⁺的 N-H 弯曲振动峰,3434 cm⁻¹处的较宽峰表 示 H-O-H 伸缩振动引起的吸收,而1628 cm⁻¹处 则是 H-O-H 弯曲振动的吸收峰^[15]。

N₂-BET 法测得 AWP-CaALG-SiO₂ 吸附剂的 比表面积和孔径分别为 167.1 m²/g 和 2.7 nm。使 用自动颗粒强度测定仪测得 AWP-CaALG-SiO₂ 颗 粒破碎时的最大压力为(24.7±3.1) N/粒,显著高于 未添加二氧化硅的 AWP-CaALG 颗粒(最大压力 为(4.2±1.5) N/粒)。这一结果与文献 [11-12] 结果 吻合,即二氧化硅的存在可以提高海藻酸盐基质 的机械强度。

综上所述,所制得的 AWP-CaALG-SiO₂ 吸附 剂具有规则的球状形貌和较大的比表面积。在制 备过程中通过加入化学性质稳定的二氧化硅,有 效改善了该复合吸附剂的机械性能。

2.2 吸附动力学

在 c_{HNO_3} =3.0 mol/L、m/V=10.0 g/L、 c_0 =50.0 mg/L、 T=(22±2) ℃条件下, AWP-CaALG-SiO₂ 对 Cs⁺的 吸附量随时间的变化如图 3 所示。由图 3 可见, Cs⁺在该吸附剂上的吸附过程可以分为 3 个阶段:

图 1 AWP-CaALG-SiO₂吸附剂的实物照片(a)、表面 SEM 图像(b、c)以及 EDX 能谱(d) Fig. 1 Photographic image (a), surface SEM image (b, c) and corresponding EDX pattern (d) of AWP-CaALG-SiO₂

图 2 AWP-CaALG-SiO₂吸附剂的 XRD 谱(a)及 FT-IR 谱(b) Fig. 2 XRD patterns (a) and FT-IR spectra (b) of AWP-CaALG-SiO₂

图 3 Cs⁺在 AWP-CaALG-SiO₂上的吸附动力学曲线 Fig. 3 Dsorption kinetics curve for Cs⁺ on AWP-CaALG-SiO₂

快速吸附阶段(最初5h)、缓慢上升阶段(5~10h) 以及稳定平衡阶段(大于10h)。在吸附开始阶 段,吸附剂的吸附位点较多,因而Cs⁺吸附速率较 快;随着吸附过程的进行,可用的吸附位点逐渐减 少,吸附过程减慢。为更好地描述AWP-CaALG-SiO₂对Cs⁺的吸附行为,分别采用两种经典的吸附 动力学模型(准一级动力学模型(式(6))和准二级 动力学模型(式(7)))拟合实验数据。

$$q_t = q_e(1 - e^{-k_1 t})$$
 (6)

$$q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t} \tag{7}$$

式中: $k_1(h^{-1})$ 和 $k_2(g/(mg \cdot h))$ 分别为准一级和准二 级动力学模型的速率常数; q_t 和 q_e 分别为 t 时刻 和吸附平衡时 Cs⁺的吸附量, mg/g。

两个模型的拟合曲线如图 3 所示, 拟合参数 如表 1 所列。由表 1 可见, 准二级动力学模型 (*R*²=0.97)较准一级动力学模型(*R*²=0.89)能更好 地拟合实验数据。根据准二级动力学模型建立的 机理推测, AWP-CaALG-SiO₂ 在吸附 Cs⁺的过程 中, 化学吸附是吸附动力学的主要控制步骤, 而包 括发生在 AWP 中的 Cs⁺和NH⁴ 的离子交换以及 Cs⁺在吸附剂中的质量扩散过程对其吸附速率的 影响较小^[16]。AWP-CaALG-SiO₂ 对 Cs⁺的吸附平 衡时间与文献中报道的 AWP/PVA/SA 复合材料 (12 h)^[15]、AWP-CaALG 凝胶微球(24 h)^[17]以及 AWP-PAN 树脂(24 h)^[18]相近。为确保不同化学 条件下 Cs⁺均能达到吸附平衡状态, 在后续吸附实 验中选择固液两相的振荡时间为 24 h。

表1 准一级和准二级动力学模型拟合参数

Table 1	Kinetics model fitting	results of pseudo-fir	st-order and pseudo-s	econd-order models
---------	------------------------	-----------------------	-----------------------	--------------------

旧四日刻	准一级动力学模型			准二级动力学模型		
PTC [P] 20	k_1/h^{-1}	$q_{\rm e}/({\rm mg/g})$	R^2	$k_2/(g/(\text{mg}\cdot\text{h}))$	$q_{\rm e}/({\rm mg/g})$	R^2
AWP-CaALG-SiO ₂	0.13	5.89	0.89	0.054	5.35	0.97

2.3 HNO₃浓度和 Cs⁺初始浓度对吸附的影响

高放废液中 HNO₃ 的浓度为 2.0~5.0 mol/L^[19],因此有必要考察 HNO₃ 浓度对所制备吸附剂吸附

Cs⁺的影响。在 *m*/*V*=10.0 g/L、*c*₀=50.0 mg/L、 *T*=(22±2) ℃条件下,考察了 AWP-CaALG-SiO₂ 在 不同 HNO₃ 浓度(1.0~8.0 mol/L)下对 Cs⁺的吸附 效果,结果示于图4。从图4可看出,在所研究的 HNO,浓度范围内,AWP-CaALG-SiO,对Cs⁺表现 出较强的吸附能力。尽管由于H+的竞争作用, Cs⁺的吸附率和吸附分配比随 HNO,浓度的增加有 所下降,但即使在 8.0 mol/L HNO,的极端条件下, AWP-CaALG-SiO,对 Cs+的吸附率仍可达约 60% (吸附分配比约150 mL/g)。表明 AWP-CaALG-SiO,对Cs+的吸附具有良好的耐酸性,可用于高放 废液中 Cs⁺的有效去除。

在 c_{HNO_3} =3.0 mol/L、m/V=10.0 g/L、T=(22±2) ℃ 条件下考察了 Cs⁺初始浓度对吸附的影响,结果如 图 5 所示。由图 5 可见,吸附未达到饱和时, AWP-CaALG-SiO2对Cs+的吸附量随Cs+初始浓度 的增加而增加;而当Cs+初始浓度增大到一定程度 (>250 mg/L)后,离子交换位点将达到饱和,继续 提高 Cs⁺初始浓度, AWP-CaALG-SiO₂ 对 Cs⁺的吸 附量并不会明显增加。

采用 Langmuir(式(8))和 Freundlich(式(9)) 等温吸附模型对实验数据进行拟合,并探究 AWP-CaALG-SiO2 与 Cs⁺的相互作用机理。Langmuir 模 型广泛应用于单分子层吸附过程。该模型假设吸

图 5 Cs⁺在 AWP-CaALG-SiO₂ 上的吸附等温线 Fig. 5 Adsorption isotherm of Cs⁺ on AWP-CaALG-SiO₂

附剂表面的吸附位点性质相同,且吸附位点之间 不存在吸附质的转移。而 Freundlich 模型是一个 经验公式,假设吸附剂对金属离子的吸附是非均 一的多层吸附[13]。

$$q = \frac{q_{\max}K_Lc_e}{1+K_Lc_e} \tag{8}$$

$$q = K_{\rm F} c_{\rm e}^{1/n} \tag{9}$$

式中:q(mg/g)和ce(mg/L)分别表示吸附量和平衡 时液相中 Cs⁺的浓度; q_{max} 为最大吸附量, mg/g; $K_{\rm L}$ 为Langmuir方程常数,L/mg;K_F((mg/g)· (L/mol)^{1/n})和 n 为与吸附量有关的 Freundlich 常数 和吸附强度,1/n 表示浓度对吸附强度的影响。

由 Langmuir 和 Freundlich 模型拟合的吸附等 温线如图 5 所示,相关拟合参数如表 2 所列。由 表2可见,相较于 Freundlich 模型(R²=0.79), Langmuir 模型(R²=0.97)能更好地拟合实验数据,表明 该吸附剂对 Cs⁺的吸附属于单分子层吸附。由 Langmuir 模型参数可得 HNO₃ 浓度为 3.0 mol/L 时, AWP-CaALG-SiO2对Cs+的理论最大吸附量为 22.9 mg/g。不同载体的无机离子交换材料对 Cs⁺的 吸附能力如表3所列。由表3可发现,在相近的 HNO3浓度条件下,本研究所制备 AWP-CaALG-SiO2 吸附剂的最大吸附量处于中间位置,进一步证明 了该吸附剂具有较好的实际应用潜力。

Table 2 Isotherm model parameters for adsorption of Cs⁺ on AWP-CaALG-SiO₂ Langmuir 模型 Freundlich 模型 吸附剂 $K_{\rm F}/(({\rm mg/g})\cdot({\rm L/mol})^{1/n})$ \mathbb{R}^2 \mathbb{R}^2 $q_{\rm max}$ /(mg/g) $K_{\rm L}/({\rm mg/g})$ п AWP-CaALG-SiO₂ 22.9 0.19 0.97 6.94 5.25 0.79

表 2 Langmuir 和 Freundlich 等温吸附模型拟合参数

Table	3 Comparison of ino	organic ion exchange composi	tes for Cs ⁺ adsorption	
复合吸附剂	平衡时间/h	最大吸附量/(mg/g)	HNO3 浓度/(mol/L)	来源
AWP-CaALG	72	45.22	2.0	[20]
AWP-SiO ₂	12	20.56	3.0	[21]
AWP-Al ₂ O ₃	1	12.0	2.0	[22]
AWP-ZrP	7	6.0	2.0	[23]
ZrP-SiO ₂	24	2.7	0.001	[24]
AWP-PMMA	24	25.1~32.7	0.1~5.0	[25]
AWP-CaALG-Silica	12	22.9	3.0	本文

表 3 无机离子交换复合材料对 Cs⁺的吸附能力对比

2.4 吸附选择性

乏燃料后处理产生的高放废液中含有大量的 裂变产物和超铀核素,涵盖30多种元素的300多 种核素^[26]。因此,高放废液中共存离子对 Cs⁺吸附 的影响被认为是评估吸附剂性能的重要因素之 一。本研究参照文献 [27] 配置模拟高放料液,并 考察多种离子共存条件下 AWP-CaALG-SiO₂ 对 Cs⁺的选择性吸附性能,吸附条件为: c_{HNO_3} = 3.0 mol/L、m/V=10.0 g/L、T=(22±2)℃。模拟高放 废液中各金属离子的原始浓度及吸附达到平衡时 的吸附率如表4所列。由表4可见,除Al3+、MoO4-、 Sr²⁺外, AWP-CaALG-SiO, 对其他离子几乎没有吸 附,这是因为Cs⁺更容易与AWP中半径相近的 NH4发生离子交换作用,因而对 Cs+吸附具有较高 的选择性[20]。模拟高放废液中所有共存离子的 K_d 以及 Cs⁺与它们的分离因子 SF 如图 6 所示。由 图 6 可见,多种阳离子共存条件下,Cs⁺的 K_d 仍处 于较高水平(772 mL/g),且显著高于其他离子, Cs+与其他金属离子的 SF 均大于 42, 进一步说明 AWP-CaALG-SiO2对 Cs⁺具有高吸附选择性。

表 4 模拟高放废液中各离子的初始浓度及吸附率 Table 4 Original concentration and corresponding adsorption rate of ions in simulated high-level liquid waste

离子	初始浓度/(mg/L)	上清液浓度/(mg/L)	吸附率/%
Cs^+	50.00	5.74	88.53
Al^{3+}	280.11	260.58	6.97
Cr^{3+}	33.33	33.24	0.27
$\mathrm{F}\mathrm{e}^{3+}$	346.77	339.28	2.16
\mathbf{K}^+	8.06	7.94	1.52
MoO_4^{2-}	144.8	131.4	9.27
Na^+	887.1	878.1	1.07
Nd^{3+}	181.18	180.19	0.55
Ni ²⁺	12.90	12.47	3.35
Sr^{2^+}	17.26	14.62	15.29

2.5 动态吸附性能

为了进一步验证 AWP-CaALG-SiO, 对 Cs⁺的 吸附特性,在 m=0.50 g、c₀=250.0 mg/L、c_{HNO3}= 3.0 mol/L、v=0.24 mL/min、T=(22±2) ℃ 条件下进 行了动态吸附实验,结果示于图 7。从图 7 可见,

Fig. 6 Distribution coefficient and separation factors of ions in simulated high-level radioactive waste liquid

Cs⁺穿透曲线呈典型的 S 形,表明 AWP-CaALG-SiO₂ 吸附剂较稳定,吸附剂中的 AWP 未从 CaALG-SiO₂ 杂化载体中泄漏出来。在工业上,通常使用穿透 率为 5% 时对应的核素处理量作为评估吸附剂性能的重要参数^[28]。图 7 显示,Cs⁺在 AWP-CaALG-SiO₂ 离子交换柱中穿透率为 5% 时,溶液处理量约为 35.0 mL,而当原料进液体积达到 145 mL 时,离子 交换柱将达到吸附饱和。所对应的 *c*/*c*₀=0.05 的吸 附量以及总吸附量分别为 17.3 mg/g 和45.8 mg/g, 通过二者的比值得到离子交换柱的利用率为 37.8%。本研究所制备的 AWP-CaALG-SiO₂ 吸附 剂在模拟工业高放料液中表现出了良好吸附性能,具有高放废液中 Cs⁺的分离去除的工业应用 潜力。

in AWP-CaALG-SiO_2 particle column

3 结论

本工作通过将磷钨酸铵细粉原位封装到二氧 化硅-海藻酸钙杂化材料基质中,制备了一种毫米 级的新型 Cs⁺吸附剂,并结合静态吸附实验和动态 柱实验,探究了所研制吸附剂在强酸性溶液中对 Cs⁺的选择性吸附能力。根据所得结果可以得到 如下结论。

1) 将海藻酸盐与化学性质稳定的二氧化硅复合, 可以有效改善海藻酸盐载体的机械性能。所制备的 AWP-CaALG-SiO₂ 吸附剂为直径 1~2 mm 的均匀球体, 其中磷钨酸铵含量为 29.0%。

2) AWP-CaALG-SiO₂ 对 Cs⁺的吸附在 12 h 内 可达到平衡,吸附过程符合准二级动力学模型和 Langmuir 吸附模型。在 3.0 mol/L HNO₃ 溶液中, 所制备的吸附剂对 Cs⁺的最大吸附量为 22.9 mg/g, 且在模拟高放废液中对 Cs⁺具有良好的选择性, 对 共存金属离子的分离因子大于 42。

3) AWP-CaALG-SiO₂ 作为离子交换柱的固定 相能够有效去除强酸性溶液中的 Cs⁺,其对 Cs⁺的 动态饱和吸附量为 17.3 mg/g,离子交换柱的利用 率为 37.8%,较好的吸附性能使其具有较好的工业 应用潜力。

参考文献:

- [1] YANG G, TAZOE H, YAMADA M. ¹³⁵Cs activity and ¹³⁵Cs/¹³⁷Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident[J]. Scientific Reports, 2016, 6: 24119.
- [2] GRAY W J. Fission product transmutation effects on high-level radioactive waste forms[J]. Nature, 1982, 296: 547-549.
- [3] MISSANA T, BENEDICTO A, GARCÍA-GUTIÉRREZ M, et al. Modeling cesium retention onto Na-, K- and Casmectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients[J]. Geochimica et Cosmochimica Acta, 2014, 128: 266-277.
- [4] YOSHIKAWA H, SUNADA S, HIRAKAWA H, et al. Radiobiological characterization of canine malignant melanoma cell lines with different types of ionizing radiation and efficacy evaluation with cytotoxic agents[J]. International Journal of Molecular Sciences, 2019, 20(4): 841.
- [5] ARTUN O. A study of nuclear structure for ²⁴⁴Cm, ²⁴¹Am, ²³⁸Pu, ²¹⁰Po, ¹⁴⁷Pm, ¹³⁷Cs, ⁹⁰Sr and ⁶³Ni nuclei used in nuclear battery[J]. Modern Physics Letters A, 2017, 32(22): 1750117.
- [6] TOSRI C, CHUSREEAEOM K, LIMTIYAYOTIN M, et al. Comparative effect of high energy electron beam and ¹³⁷Cs gamma ray on survival, growth and chlorophyll content in curcuma hybrid 'laddawan' and determine proper dose for mutations breeding[J]. Emirates Journal of Food and Agriculture, 2019, 31(5): 321-327.
- [7] CHEN S Q, HU J Y, HAN S J, et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade[J]. Separation and Purification Technology, 2020, 251: 117340.
- [8] 王启龙,吴艳,韦悦周. 硅基磷钼酸铵吸附剂的合成及 其对 Cs 的吸附[J]. 核化学与放射化学, 2014, 36(4): 210-215.

WANG Qilong, WU Yan, WEI Yuezhou. Synthesis of

ammonium molybdopho-sphate (AMP) loaded silica and its adsorption for cesium[J]. Journal of Nuclear and Radiochemistry, 2014, 36(4): 210-215(in Chinese).

- [9] SUTIRMAN Z A, SANAGI M M, AINI W I W. Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review[J]. International Journal of Biological Macromolecules, 2021, 174: 216-228.
- [10] ZHANG S, XU F, WANG Y F, et al. Silica modified calcium alginate-xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution[J]. Chemical Engineering Journal, 2013, 234: 33-42.
- [11] CORADIN T, NASSIF N, LIVAGE J. Silica-alginate composites for microencapsulation[J]. Applied Microbiology and Biotechnology, 2003, 61: 429-434.
- [12] HERNÁNDEZ-GONZÁLEZ A C, TÉLLEZ-JURADO L, RODRÍGUEZ-LORENZO L M. Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and sol-gel reactions[J]. Carbohydrate Polymers, 2021, 267: 118186.
- [13] 张晓霞. 多孔性硅基磷钼酸铵吸附剂对裂变产物铯的 吸附及固化性能研究[D]. 上海: 上海交通大学, 2017.
- [14] 董贝贝. 几种介孔分子筛固载力粦鹤杂多酸催化剂的 制备、表征及催化性能研究[D]. 郑州: 郑州大学, 2013.
- [15] CHEN S, HU J, SHI J, et al. Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater[J]. Journal of Hazardous Materials, 2019, 371: 694-704.
- [16] CAO F, WANG L, YAO Y, et al. Synthesis and application of a highly selective molecularly imprinted adsorbent based on multi-walled carbon nanotubes for selective removal of perfluorooctanoic acid[J]. Environmental Science: Water Research & Technology, 2018, 4(5): 689-700.
- [17] MIMURA H, SAITO M, AKIBA K, et al. Selective uptake of cesium by ammonium molybdophosphate (AMP)calcium alginate composites[J]. Journal of Nuclear Science and Technology, 2001, 38(10): 872-878.
- YANG Junqiang, WANG Man, ZHANG Linlin, et al. Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin[J].
 Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(4): 877-885.
- [19] NING S Y, WANG X P, ZOU Q, et al. Direct separation

of minor actinides from high level liquid waste by Me2-CA-BTP/SiO₂-P adsorbent[J]. Scientific Reports, 2017, 7: 14679.

- [20] WU Y, MIMURA H, NIIBORI Y, et al. Study on adsorption behavior of cesium using ammonium tungstophosphate (AWP)-calcium alginate microcapsules[J]. Science China Chemistry, 2012, 55(9): 1719-1725.
- [21] SANG H J, MAO C, MING F C, et al. Selective separation and immobilization process of ¹³⁷Cs from high-level liquid waste based on silicon-based heteropoly salt and natural minerals[J]. Chemical Engineering Journal, 2022, 449: 137842.
- [22] CHAKRAVARTY R, RAM R, PILLAI K T, et al. Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic ¹³⁷Cs/^{137m}Ba generator[J]. Journal of Chromatography A, 2012, 1220: 82-91.
- [23] MURTHY G S, SIVAIAH M V, KUMAR S S, et al. Adsorption of cesium on a composite inorganic exchanger zirconium phosphate-ammonium molybdophosphate[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260: 109-114.
- [24] 刁新雅, 郝乐存, 马锋, 等. 新型硅基焦磷酸锆离子交换 剂的制备及其对 Cs⁺的吸附性能研究[J]. 原子能科学技 术, 2024, doi: 10.7538/yzk.2024.youxian.0008.
 DIAO Xinya, HAO Lecun, MA Feng, et al. Preparation of novel silica-based zirconium pyrophosphate ion-exchanger and its adsorption performance for Cs⁺[J]. Atomic Energy Science and Technology, 2024, doi: 10.7538/yzk.2024.youxian.0008(in Chinese).
- [25] BANERJEE D, RAO M A, GABRIEL J, et al. Recovery of purified radiocesium from acidic solution using ammonium molybdophosphate and resorcinol formaldehyde polycondensate resin[J]. Desalination, 2008, 232: 172-180.
- [26] KOYAMA S I, SUZUKI T, OZAWA M. From waste to resource, nuclear rare metals as a dream of modern alchemists[J]. Energy Conversion and Management, 2010, 51(9): 1799-1805.
- [27] 王建晨, 宋崇立, 陈靖. 杯冠化合物从高放废液中萃取 Cs 的研究[C]//第七届核化学与放射化学学术研讨会. 北京: 中国核学会核化学与放射化学分会, 2005.
- [28] TANG J H, JIN J C, LI W A, et al. Highly selective cesium(I) capture under acidic conditions by a layered sulfide[J]. Nature Communications, 2022, 13: 658.