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Abstract: Molybdenum (Mo) alloys are widely employed in high-temperature environments, such as
advanced nuclear systems, due to their excellent properties, including high melting point and thermal
conductivity. However, Mo alloys suffer from poor ductility at room and intermediate temperatures,
which can be improved by adding rhenium (Re) or dispersing second-phase particles. These particles
refine the grain size by promoting nucleation and inhibiting grain growth, improving strength while
reducing the concentration of harmful solutes. Nevertheless, creep behavior is a critical performance
aspect for Mo-Re alloys during service, as it can limit their high-temperature applications. Creep refers
to the time-dependent plastic deformation that occurs at high-temperatures under stress levels below the
yield strength of a material. In polycrystalline Mo alloys, grain boundary sliding exacerbates creep at
elevated temperatures, restricting their use. Previous studies on Mo creep behavior have indicated that
subgrain formation and grain growth occur during high-temperature service, and nanocrystalline
materials exhibit distinct creep mechanisms compared to polycrystalline counterparts. Recent findings

suggest that nanocrystalline materials can experience significant creep even at lower temperatures,
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indicating the importance of investigating the effects of high grain boundary density on the creep
behavior of Mo alloys. Given that experimental creep tests require long durations, molecular dynamics
(MD) simulation offers an efficient alternative for studying atomic-scale processes at grain boundaries.
In this study, MD simulation was employed to investigate the tensile creep behavior of nanocrystalline
Mo with varying grain sizes under different temperature and stress conditions. The Voronoi method was
used to generate nanocrystalline Mo structures with random grain orientations, and tensile creep
simulations were conducted using the LAMMPS software. The results reveal that increasing
temperature and applied stress accelerates the creep process, with smaller grain sizes exhibiting more
pronounced creep behavior. Atomic-level visualization shows that dislocation density and grain
structures remain largely unchanged, while local atomic environments change due to vacancy diffusion
along grain boundaries. These changes are responsible for the observed deformation mechanisms,
particularly Coble creep, which dominates under the simulated conditions. This study provides valuable
insights into the mechanisms of creep in nanocrystalline Mo at 800-1 400 K, which is critical for its
potential application in nuclear industry designs. The findings highlight the importance of understanding
grain boundary diffusion and its role in controlling the overall creep behavior in nanocrystalline
materials.
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Table 2 SSCR of nanocrystalline Mo under different stresses and temperatures
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674 FETRERAHAR 5ok
1.0 1.0 b
_o08f _o08f
£ o6t £ o6t Www"“ ; ’
§ § ‘ R i P vy v e
S 0.4 S 0.4
. : = e
02 | 0.2'1 1200K
— 1400 K
0.0 y . . - 0.0 y . . . . -
0 50 100 150 200 250 300 0 50 100 150 200 250 300
i} i /ps [} i /ps
1.0 c 1.0 - d
08t 08}t
£ o6l £ o6l
S| | Pt A &l | e
S 0.4 B = 0.4
= El;OO%IO(K = ‘ - 213%0010(1(
o2 1200K 02| 1200 K
l — 1400 K — 1400 K
0.0 : : : : : : 0.0 : : : : : :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
It [A]/ps & [ /ps
a——-3.182 nm; b——4.754 nm; c——5.052 nm; d——6.856 nm
19 Mo J5t 477 (5% 5 i) A (9 56 &
Fig. 9 Relationship between mean square displacement of Mo atom and time
) 3.182 nm KA B 1R SRR ST R 6.856 nm |1
79} T * 4.754 nm
79 e 5052 nm 4k i Mo 7 800 K. 1 GPa FBEAR AR it i o 14
= 8O e i+ 6.856nm . N | .
R JE 5 B, B 12 FiR ok SRRy 3,182 nm (1)
8 gole.. T - 44K §h Mo 7F 1 400 K., 4 GPa F ¥l AR AR JE 3o & o
&0 - -
83} MR 5 B . R 11, 12 ], AR E 3 B
] IS . R TE G . IR 12 R B, 7E R R L
0.60 0.65 0.70 0.75 0.80 0.85 0.90 = a0 N —
o0 LA AR B 66, 199 5030 2 2 A 75 OFS
T K7 ™, N AN , Y
r PRI T QB B R A28 A) , 3X R W I A )

K10 ¥ ERBSEENRR
Fig. 10 Relationship between diffusion
coefficient and temperature

20 5 T F R %R 78 FCC 4589 . Mo 1Y S ik 4
¥4k BCC #5560 51 e s HAr 4B 3R 8 &

BRIRBE & AR AR, T I 2 S s L
SRR, XRY, FESOIRE MR R AT, A
TS T IR F 18R R EE . IR F7E A LY B
A% U5 A5 38 B 9N R S Coble 878, R AT 4
YK i Mo 1) 2R S L 24 Coble 25

a——~0 ps; b——150 ps; c——300 ps
B11 foki RSy 6.856 nm 194K i Mo 78 % A8 AR I it 72 i 1 J5 15 L 1A
Fig. 11

Atomic information map of nanocrystalline Mo (6.856 nm) during creep deformation



5533

RARET 45 942K h BH 85 72474 B9 R T AR MR 5T

675

a——~0 ps; b——150 ps; ¢

A 12

300 ps

FRRL RS A 3.182 nm A 42K i Mo 78 B A5 A5 TE o A2 rh i IR 1% S &

Fig. 12 Atomic information map of nanocrystalline Mo (3.182 nm) during creep deformation

3 #Hig

AR SCRI 53 80 91 2 07 S A 58 AN TR) kL
R BG4 K i Mo 76 R [R)3 BE . S [t o iz f
B R AR IR AR AT A, 43 AT 1 SRR ST L R RN R )
XFUEARAT R 5 o AU, BB, N SRR T
it i AL TR R B R 7, 35 2 4 40K B Mo
HOFE AR M A PR AN K Mo H i 5 T AR
151, A AT SR PR A HIGE TE, DA T 4R R 0 AR
AT R, B TR RS R s R
BRE 7, DI A2 HE G AR AR T8 A2 AR SR 45 14
T, A B B AR T R A A 2 T n A
MG . TEARSCBM T, X T 40K 5 Mo 1t
7, HF RSP N Coble 8722

S 3k

[1] LIU G, ZHANG G J, JIANG F, et al. Nanostructured
high-strength molybdenum alloys with unprecedented
tensile ductility[J]. Nature Materials, 2013, 12: 344-350.

[2] LIUJ, CHIN B, ZEE R. Processing and high temperature
properties of refractory alloy single crystals[J]. Journal of
Materials Processing Technology, 1999, 89-90: 425-431.

[3] ERICKSEN R H, JONES G J. Analysis of primary creep
of molybdenum at high temperatures[J]. Metallurgical
Transactions, 1972, 3(7): 1735-1741.

[4] CAIB,KONG QP, LU L, et al. Low temperature creep
of nanocrystalline pure copper[J]. Materials Science and
Engineering: A, 2000, 286(1): 188-192.

[5] MILLETT P C, DESAI T, YAMAKOV V, et al. Atom-
istic simulations of diffusional creep in a nanocrystalline
body-centered cubic material[J]. Acta Materialia, 2008,
56(14): 3688-3698.

[6] DESAI T G, MILLETT P, WOLF D. Is diffusion creep
the cause for the inverse Hall-Petch effect in nanocrys-

talline materials?[J]. Materials Science and Engineering:

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

L16]

A, 2008, 493(1-2): 41-47.

LUNDBERG L. An evaluation of molybdenum and its al-
loys[C]//16th  Thermophysics
AIAA, 1981.

HTFEL, A, BRI, S ARRS T 90K o-Zr
WRAEAT R 5> F- 3 J1 2. 4R 2R, 2024, 60(5):
699-712.

MENG Zikai, MENG Zhichao, GAO Changyuan, et al.

Conference. Virginia:

Molecular dynamics simulation of creep mechanism in
nanocrystalline a-zirconium under various conditions[J].
Acta Metallurgica Sinica, 2024, 60(5): 699-712(in Chi-
nese).

VR R AR YK Fe-Ni-Cr A& 4 4 48 1 247 M 45t
D). KiE: KT K%, 2021.

SCHIOTZ J, VEGGE T, di TOLLA F D, et al. Atomic-
scale simulations of the mechanical deformation of
nanocrystalline metals[J]. Physical Review B, 1999,
60(17): 11971-11983.

HIREL P. Atomsk: A tool for manipulating and convert-
ing atomic data files[J]. Computer Physics Communica-
tions, 2015, 197: 212-219.

PLIMPTON S. Fast parallel algorithms for short-range
molecular dynamics[J]. Journal
Physics, 1995, 117(1): 1-19.
CHEN C, DENG Z, TRAN R, et al. Accurate force field

of Computational

for molybdenum by machine learning large materials da-
ta[J]. Physical Review Materials, 2017, 1(4): 043603.
SAHA S, MOTALAB M. Nature of creep deformation in
nanocrystalline tungsten[J]. Computational Materials Sci-
ence, 2018, 149: 360-372.

PAL S, MERAJ M. Structural evaluation and deforma-
tion features of interface of joint between nano-crys-
talline Fe-Ni-Cr alloy and nano-crystalline Ni during
creep process[J]. Materials & Design, 2016, 108: 168-
182.

STUKOWSKI A. Visualization and analysis of atomistic


https://doi.org/10.1038/nmat3544
https://doi.org/10.1016/S0924-0136(99)00013-8
https://doi.org/10.1016/S0924-0136(99)00013-8
https://doi.org/10.1007/BF02642554
https://doi.org/10.1007/BF02642554
https://doi.org/10.1016/S0921-5093(00)00633-X
https://doi.org/10.1016/S0921-5093(00)00633-X
https://doi.org/10.1016/j.actamat.2008.04.004
https://doi.org/10.1016/j.msea.2007.06.097
https://doi.org/10.1016/j.msea.2007.06.097
https://doi.org/10.1103/PhysRevB.60.11971
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevMaterials.1.043603
https://doi.org/10.1016/j.commatsci.2018.03.040
https://doi.org/10.1016/j.commatsci.2018.03.040
https://doi.org/10.1016/j.commatsci.2018.03.040

676

FETRERAHAR 5ok

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

simulation data with OVITO-the open visualization
tool[J]. Modelling and Simulation in Materials Science
and Engineering, 2010, 18(1): 015012.

MUKHERIJEE A K, BIRD J E, DORN J E. Experimental
correlations for high-temperature creep[J]. ASM-Trans,
1968.

HANSEN N. Hall-Petch relation and boundary strength-
ening[J]. Scripta Materialia, 2004, 51(8): 801-806.

FAN G J, CHOO H, LIAW P K, et al. A model for the in-
verse Hall-Petch relation of nanocrystalline materials[J].
Materials Science and Engineering: A, 2005, 409(1-2):
243-248.

CARLTON C E, FERREIRA P J. What is behind the in-
verse Hall-Petch effect in nanocrystalline materials?[J].
Acta Materialia, 2007, 55(11): 3749-3756.

TANG Y, BRINGA E M, MEYERS M A. Inverse Hall-
Petch relationship in nanocrystalline tantalum[J]. Materi-
als Science and Engineering: A, 2013, 580: 414-426.
QUEK S S, CHOOI Z H, WU Z, et al. The inverse hall-
petch relation in nanocrystalline metals: A discrete dislo-
cation dynamics analysis[J]. Journal of the Mechanics
and Physics of Solids, 2016, 88: 252-266.

GAO F, HEINISCH H L, KURTZ R J. Migration of va-
cancies, He interstitials and He-vacancy clusters at grain
boundaries in a-Fe[J]. Journal of Nuclear Materials,
2009, 386-388: 390-394.

CALLISTER W D, RETHWISCH D G. Materials sci-
ence and engineering: An introduction[M]. USA: John
Wiley, 2014.

YANG X S, WANG Y J, ZHAI H R, et al. Time-, stress-,

[26]

[27]

[28]

[29]

[30]

[31]

[32]

and temperature-dependent deformation in nanostruc-
tured copper: Creep tests and simulations[J]. Journal of
the Mechanics and Physics of Solids, 2016, 94: 191-206.
LAIDLER K J. The development of the Arrhenius equa-
tion[J]. Journal of Chemical Education, 1984, 61(6): 494-
498.

CAILLARD D, MARTIN J L. Thermally activated mech-
anisms in crystal plasticity[M]. Oxford: Pergamon, 2003.
YAMAKOV V, WOLF D, SALAZAR M, et al. Length-
scale effects in the nucleation of extended dislocations in
nanocrystalline Al by molecular-dynamics simulation[J].
Acta Materialia, 2001, 49(14): 2713-2722.

TJONG S C, CHEN H. Nanocrystalline materials and
coatings[J]. Materials Science and Engineering R, 2004,
45(1-2): 1-88.

et BT, T2, 55, AN SR S B AR
R RASAT T U RE (D). Ff5 48, 2016, 40(12): 1282-
1290.

LIU Xiaoyan, ZHAO Xicheng, YANG Xirong, et al.
Progress in research on creep behavior of ultrafine/nano-
grained metallic materials[J]. Chinese Journal of Rare
Metals, 2016, 40(12): 1282-1290(in Chinese).
HONEYCUTT J D, ANDERSEN H C. Molecular dy-
namics study of melting and freezing of small Lennard-
Jones clusters[J]. The Journal of Physical Chemistry,
1987, 91(19): 4950-4963.

STUKOWSKI A, BULATOV V V, ARSENLIS A. Auto-
mated identification and indexing of dislocations in crys-
tal interfaces[J]. Modelling and Simulation in Materials

Science and Engineering, 2012, 20(8): 085007.


https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1016/j.scriptamat.2004.06.002
https://doi.org/10.1016/j.msea.2005.06.073
https://doi.org/10.1016/j.actamat.2007.02.021
https://doi.org/10.1016/j.msea.2013.05.024
https://doi.org/10.1016/j.msea.2013.05.024
https://doi.org/10.1016/j.jmps.2015.12.012
https://doi.org/10.1016/j.jmps.2015.12.012
https://doi.org/10.1016/j.jnucmat.2008.12.159
https://doi.org/10.1016/j.jmps.2016.04.021
https://doi.org/10.1016/j.jmps.2016.04.021
https://doi.org/10.1021/ed061p494
https://doi.org/10.1016/S1359-6454(01)00167-7
https://doi.org/10.1016/j.mser.2004.07.001
https://doi.org/10.1021/j100303a014
https://doi.org/10.1088/0965-0393/20/8/085007
https://doi.org/10.1088/0965-0393/20/8/085007

	1 模拟方法
	2 模拟结果与分析
	2.1 蠕变曲线
	2.2 晶粒尺寸的影响
	2.3 施加应力和温度的影响
	2.4 蠕变机制

	3 结论
	参考文献

