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Abstract: The nuclear reactor core is a highly heterogeneous system where various physical phenomena
are interrelated and coupled. The complex coupled interaction necessitates multi-physics calculations to
realize more accurate and realistic simulations in core analysis, especially for the transient conditions of
fast reactors. A full-core three-dimensional multi-physics calculation method was researched based on
the fast reactor code system MOSASAUR, which is focused on both core steady-state and transient
analyses of fast reactor. The deterministic two-step calculation strategy based on the homogenization
theory is utilized in MOSASAUR to perform the reactor core neutronics analysis. There are four main
functional modules in the previous version: cross-sections generation module, flux spectrum correction

module, core simulation module and sensitivity and uncertainty analysis module. In cross-sections

I 5 H #A: 2024-06-27; &[5 H #1: 2024-08-20
E&TH: FXRHARPER4E (12205283, 12075228)
*EEEE: THER


https://doi.org/10.7538/yzk.2024.youxian.0519

#5538 [

generation module, the collision probability method was used to determine the neutron flux of the
typical assemblies. Without using the flux spectrum correction module, the neutron flux for the
equivalent one-dimensional assembly would be calculated to collapse the cross-sections from 1 968
groups into 33 groups. In the homogenization process, the super homogenization method was optional
to be used as the homogenization technique. Based on the 33-group cross-sections, core simulation
module simulated core neutron behaviors based on the neutron transport solvers, which was Sy method
with triangular grid. The subchannel code COBRA-YT was utilized to carry out the thermal hydraulic
calculations. By using COBRA-YT, the distributions of channel coolant temperature and fuel
temperature were updated for the thermal feedback calculation of MOSASAUR. In order to extend the
capability of COBRA-YT for LFR simulations and analyses, a series of modifications and
enhancements have been implemented, including integrating thermophysical properties and empirical
correlations related to liquid metals. By the modified COBRA-YT, the temperature distributions of fuel
and coolant, pressure drop and coolant flow of LFR will be determined for the core steady-state and
transient analyses. The stiffness confinement method (SCM) was employed to solve the time-dependent
multi-group neutron transport equation. And the MOSASAUR code was modified to expand the
capabilities for neutronic kinetics simulation. For the neutron-thermal hydraulic coupling calculation of
fast reactor, the thermal feedback module was cooperated with the neutron transport calculation to
update the coupling parameters. In the process of the iteration, the temperature distributions of fuel and
coolant will be determined through thermal hydraulic calculation, which requires the core power
distribution as the input information. The homogenized cross-sections will be updated by the
interpolation method, which takes the temperature as the core-state variable. The homogenized cross-
sections would be prepared in advance. Based on the updated cross-sections, the core simulation of LFR
will be re-calculated and the obtained power distribution will be transferred to the next thermal
hydraulic calculation. The LMW benchmark and the problem based on ORAL 19-rod bundle were
employed to verify the accuracy of transient calculation and thermal hydraulic module respectively.
Finally, the multi-physics calculation method was utilized to simulate the transient process of the
MicroURANUS core. The simulation results demonstrate the capability of the constructed multi-physics
calculation framework to accurately simulate the transient behaviors of LMRs. Numerical results show
the good accuracy of the newly-developed multi-physics calculation module with MOSASAUR.

Key words: multi-physics coupling; lead cooled fast reactor; transient analysis; thermal hydraulic
calculation; MOSASAUR
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Fig. 1 Calculation process of steady-state core calculation
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