
 

1.7 MV 串列加速器调束优化研究

蒋　冉，李爱玲，崔保群，唐　兵，陈浩南，王云峰
（中国原子能科学研究院 核物理研究所，北京　102413）

摘要：为了改进传统的人工调束方法，提升其效率和调优品质，本文引入了差分进化（DE）算法，旨在实现

调束过程的智能化。在详细阐述差分进化算法的算法架构基础上 ，采用 Python编程语言 ，并利用 py-

EPICS接口与实验物理及工业控制系统（EPICS）建立了稳定的连接。此外，为了方便用户操作与监控，建

立了直观的控制系统工作室（CSS）界面，实现了高效的上位控制和实时监测功能。本文基于 1.7 MV串列

加速器平台对 DE算法束流调优的可行性和优化效果进行了在线验证。在实验过程中，不仅对算法的性

能进行了全面的评估，还根据实验结果对算法进行了针对性的优化和改进。这些改进措施显著提升了算

法的优化能力，使得束流传输效率高达 80%。本文不仅展示了 DE算法在束流调优中的优异性能，还为智

能调束技术的发展提供了新的思路和方法。通过实现调束智能化，有望进一步提高加速器系统的运行效

率和稳定性，为相关研究和实践领域提供参考。
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1.7 MV Tandem Accelerator Beam Tuning Optimization

JIANG Ran,  LI Ailing,  CUI Baoqun,  TANG Bing,  CHEN Haonan,  WANG Yunfeng
(Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China)

Abstract: To  augment  the  inherent  efficiency  and  enhance  the  quality  of  the  conventional  manual
beam-tuning methodology, this paper presented an innovative approach through the incorporation of a
differential  evolution  (DE)  algorithm.  Initially,  the  architectural  framework  of  the  DE  algorithm  was
meticulously  delineated,  serving  as  the  bedrock  of  the  methodological  paradigm.  The  DE  algorithm,
renowned  for  its  robust  optimization  capabilities,  is  implemented  utilizing  the  versatile  Python
programming  language.  This  implementation  leverages  Python’s  computational  prowess  and  inherent
flexibility, enabling the development of a sophisticated algorithmic solution. A resilient connection with
the  experimental  physics  and  industrial  control  system  (EPICS)  was  established  via  the  pyEPICS
interface. This integration facilitates seamless communication and precise control between the advanced
DE algorithm and the intricate accelerator system. The pyEPICS interface acted as a conduit, ensuring
real-time data exchange and enabling dynamic adjustments to be made based on the algorithm’s outputs.
Furthermore, to augment user operation and monitoring capabilities, an intuitive control system studio
(CSS)  interface  was  devised.  This  interface  empowered  efficient  upper-level  control  and  real-time
monitoring functions,  thereby significantly  bolstering the usability  and practicality  of  the  system.  The

  
收稿日期：2024-06-30；修回日期：2024-08-27

基金项目：国家重点研发计划（2023YFA1607000） 

第59卷第3期
2025年3月

原　子　能　科　学　技　术

Atomic Energy Science and Technology

Vol. 59, No. 3
Mar.  2025

https://doi.org/10.7538/yzk.2024.youxian.0529


CSS interface  features  a  user-friendly  graphical  user  interface  (GUI)  that  allows  operators  to  monitor
and  adjust  parameters  in  real-time  with  ease,  enhancing  the  overall  user  experience  and  operational
efficiency.  Using  the  1.7  MV  tandem  accelerator  platform  as  a  testbed,  rigorous  experiments  were
conducted  to  ascertain  the  feasibility  and  efficacy  of  the  DE  algorithm  in  beam  optimization.  These
experiments  were  designed  to  comprehensively  evaluate  the  algorithm’s  performance  under  various
conditions  and  constraints.  During  these  trials,  this  paper  not  only  scrutinized  the  algorithm’s
performance but also implemented optimizations and enhancements based on empirical findings. These
refinements notably elevate the optimization capabilities of the algorithm, culminating in an impressive
beam transfer efficiency of 80%. The methodology encompassed several pivotal steps. Firstly, the DE
algorithm  using  Python  was  implemented,  capitalizing  on  its  robust  computational  capabilities  and
inherent flexibility. This implementation allowed for the development of a sophisticated and adaptable
algorithmic solution. Subsequently, the algorithm was seamlessly integrated with the EPICS system via
the  pyEPICS  interface,  enabling  precise  control  and  monitoring  of  the  accelerator  beam.  The  CSS
interface  was  meticulously  developed  to  offer  an  intuitive  and  user-friendly  graphical  interface,
facilitating  real-time  monitoring  and  adjustment  of  parameters  by  operators.  The  experimental  results
underscore that the exceptional performance of the DE algorithm in beam tuning. The optimized beam
transfer  efficiency  of  80%  constitutes  a  substantial  improvement  over  traditional  manual  methods,
highlighting  the  algorithm’s  efficacy  in  enhancing  beam-tuning  processes.  Furthermore,  the  DE
algorithm’s adaptability and robustness were evident in its proficiency to handle a diverse array of beam
conditions  and  constraints,  demonstrating  its  versatility  and  practical  utility.  In  conclusion,  this  study
highlights the superior performance of the DE algorithm in beam tuning and proposes a novel approach
for  the  development  of  intelligent  beam-tuning  technology.  By  achieving  beam-modulation
intelligentization, this paper strives to further enhance the efficiency and stability of accelerator systems.
This  research  not  only  contributes  to  the  advancement  of  beam-tuning  techniques  but  also  holds
considerable promise for related fields of study and practical applications. The findings presented in this
paper  have  the  potential  to  stimulate  further  research  and  development  in  this  domain,  ultimately
culminating in the creation of more efficient and reliable accelerator systems. This work underscores the
importance  of  leveraging  advanced  algorithmic  solutions  and  robust  control  systems  to  enhance  the
performance and operational efficiency of accelerator facilities.
Key words: 1.7 MV tandem accelerator; differential evolution algorithm; beam optimization

加速器的运行和维护是一个复杂且要求高度

精确的过程。随着科技的发展，传统的人工调束

方法已经无法满足现代加速器对控制可靠性和实

时性的高要求。特别是在面对运行成本高、工作

环境复杂以及干扰因素多的情况，智能调束技术

的应用显得尤为重要。1.7 MV 串列加速器是一

种能够提供高能粒子束流的设备，广泛应用于材

料科学、生物医学、核物理研究等领域。该加速

器通过串联多个加速级，逐步增加粒子的能量，最

终将粒子加速至所需的能量水平[1]。

随着加速器技术的不断进步，对加速器的控

制精度和稳定性要求越来越高。传统的人工调束

方法不仅耗时耗力，而且难以应对复杂的工作环

境和干扰因素。智能调束技术通过自动化和智能

化的手段，能够实现对加速器的精确控制，提高运

行效率，降低运行成本，并且能够快速响应各种变

化，保证实验的顺利进行。本文着重研究 1.7 MV

串列加速器的负氢离子源注入机设计并实现智能

调束系统。
 

1　差分进化算法

差分进化（differential evolution，DE）算法是由

Storn 和 Price 提出的一种基于群体的自适应全局

优化算法 [2]，该算法主要分为 2 个阶段：一是种群
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初始化阶段；二是进化阶段，进化阶段包括变异、

交叉、选择等过程，迭代直到满足终止条件。DE算

法作为进化算法家族的一个分支，以其较强的鲁

棒性、速度快、执行简单和全局优化能力在各个

领域得到了广泛的应用。 

1.1　种群初始化

在进化开始之前，需要对 DE 算法中的种群进

行初始化，这是一次性操作，不参与迭代过程，其

中种群中的个体（又称目标向量）在解空间内初始

化。第 i 个个体（又称决策变量）的表达式为：

Xi = Xi,1,Xi,2,Xi,3, · · · ,Xi,D （1）

式中，D 为目标函数的维数，即对应优化问题的决

策变量的个数 [3]。对于大多数优化问题，解空间

都会存在上下边界，分别为：

Xmin = X1,min,X2,min,X3,min, · · · ,XD,min （2）

Xmax = X1,max,X2,max,X3,max, · · · ,XD,max （3）

初始目标向量都应被限制在解空间内。每个

目标 i 上界和下界的函数为：

xi, j = xi,min+ rand[0,1]× (xi,max− xi,min) （4）

式中：rand[0, 1] 为 [0, 1] 范围内的 1 个随机数；j 为
第 j 个种群。在最优化过程中，会给定 1 个种群规

模（NP），NP一直保持不变。

在 DE 算法中，评估个体表现的指标被称为适

应度函数（fitness function）[4]。这个函数是判断个

体质量的核心标准。适应度函数与所面临的优化

问题的目标函数密切相关，其设计对于算法寻找

最优解的效率和质量有着决定性的影响。 

1.2　差分变异

在 DE 算法的执行流程中，初始种群一旦建

立，接下来便进行差分变异步骤。在 DE 算法中，

变异过程不是简单的随机扰动，而是通过结合目

标向量和其他个体的差分向量来生成新的突变向

量 [5]。这个过程可以视为一种基于差异的变异策

略，其利用种群中的现有信息来构建新的候选解，

从而有助于算法更有效地搜索解空间。

在DE算法的差分变异中，目标向量与差分向量

的结合生成了突变向量，其数学表达式为：

VG
i = XG

i +F · (XG
r1−XG

r2) （5）

VG
i

XG
i

式中：i、r1 和 r2 为在 [1, NP] 之间随机选择的不同

整数；    为由突变产生的突变个体；F 为缩放因

子，用于控制差分向量的影响程度 [ 5 ]；    为第

G 次迭代的第 i 个个体。

总结来说，DE 算法的差分变异过程通过种群

内部的相互作用来生成新的解，而不是依赖于随

机扰动，这使得 DE 算法在处理复杂优化问题时

表现出了良好的性能和鲁棒性。 

1.3　交叉和选择

突变后，突变和目标载体的成分根据交叉率

（CR）进行交换，以产生后代，在 DE 算法中也称为

试验载体。有两种常用的交叉策略，包括二项交

叉和指数交叉[5]。根据二项交叉产生的试验向量为：

UG
i, j =

®
VG

i, j if rand[0,1] ⩽ CR or j = jrand

XG
i, j otherwise

（6）

UG
i, j XG

i, j VG
i, j

jrand

式中：    为通过目标向量    和突变向量    进行

交叉操作生成的试验向量；    为在 [1, D] 内随机

选择的整数，以确保供体向量中的至少 1 个维度

传递给试验向量[5]。通过这种方式，DE 算法能够

有效地探索解空间，并保持种群的多样性，同时避

免了遗传算法中可能出现的早熟收敛问题。

DE 算法中的选择过程对于确定哪个载体，无

论是试验载体还是目标载体，将会被保留到下一

代是至关重要的。在选择之前，所有的测试向量

都应该通过目标函数进行评估，以获得适应度。

适应度较差的向量被丢弃，而适应度较好的向量

被保留。选择操作为：

XG+1
i =

®
UG

i if f (UG
i ) ⩽ f (XG

i )

XG
i otherwise

（7）

f (UG
i ) f (XG

i )

XG + 1
i

式中：    和    分别为试验向量和目标向量

的适应度；    为第 G+1次迭代的第 i 个个体。 

1.4　算法流程

DE算法的整体流程如下：1） 随机生成初代种

群，迭代次数为 0，即 g=0；2） 计算每个种群对应的

初始值向量；3） 判断是否达到终止条件或达到最

大迭代数，如果满足，则程序终止并且输出最佳解

向量，否则继续执行步骤 4；4）  进行差分变异和

交叉操作，并计算种群中的适应度值，最后进行

选择操作，得到新的种群；5）  g=g+1，以新的种群

继续进行步骤 3 的操作。DE 算法流程图如图 1

所示。 

2　在线实验 

2.1　实验流程

由于 1.7 MV 串列加速器高压加速段及高能
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束流线尚在调试阶段，为了测试本文采用的优化

方法，对串列加速器低能束流线进行在线实验测

试，可调的器件包括：1台灯丝加热电源、1台弧放

电电源、3 台高压电源（分别用于引出电压、二次

加速电压和单透镜电压）、1 台磁铁稳流电源和

2 个法拉第筒（分别记为 F1 和 F2） [1]，串列加速器

低能束流线如图 2所示。

 
 

离子源

引出
电极

单透镜
电极

35 kV

高压加速管

法拉第筒F1

法拉第筒F2

30°分析磁铁

束测真空室

陶瓷
绝缘子

Va
电极

图 2    串列加速器低能束流线
Fig. 2    Low energy beam line for tandem accelerator

 
本文采用直接在线优化方法，目标函数来自

于法拉第筒测得的束流信息，由皮安表进行采

集。引出电极、Va 电极、单透镜电极和 30°分析

磁铁的电压构成决策变量。根据设备最初设计时

设定的运行参数，确定变量的参数范围，即确定解

空间的边界。适应度为传输效率，即 F2 与 F1 的

比值。

本文采用 Python 语言实现 DE 算法的程序，

由于在控制系统下，所有的决策变量均被封装成

了实验物理及工业控制系统（experimental physics

and industrial control system，EPICS）的过程变量

（process variable，PV），以 pyEPICS 作为访问控制

系统 PV 的工具 [3]。同时，编写控制系统工作室

（control system studio，CSS）界面便于观测调束过

程中各决策变量的变化以及优化后得到的束流信

息 [6]。此外，还可以在 CSS 界面实现对优化程序

参数值的设定，更加方便快捷，优化程序与控制系

统的集成结构示意图如图 3 所示，其中 IOC 为输

入/输出控制器，PSn 为第 n 个电源。

 
 

CSS编写 自动化程序

IOC

pyEPICS

PS1 PS2 PS
n

...

图 3    优化程序与控制系统的集成结构
Fig. 3    Integrated structure of optimization program and

control system
  
2.2　实验结果与分析 

2.2.1　H−的 DE 算法寻优　初始实验中优化变量

为 4 台电源，即 D=4、NP=5、F=0.8、CR=0.7。优化

目标为：调束优化时间达到 30 min 以内，传输效率

达到 80%。在 CSS 界面设置好各个变量的取值范

围，对 H−进行了 DE 算法调束测试，得到的束流调

优曲线如图 4 所示，本文采集的 H−离子束的数据

均为绝对值。

在同样的实验条件下，传统的人工调束时间

 

初始值向量

适应度或迭代次数
是否达到要求?

差分变异

否

是

交叉

选择

终止进化

生成初代种群
g=0

图 1    DE算法流程图

Fig. 1    DE algorithm flowchart
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强
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图 4    H−束流调优曲线

Fig. 4    Beam optimization curve of H−

第3期　　 蒋　冉等：1.7 MV串列加速器调束优化研究 765



约为 3～4 h，传输效率约为 66%。对于 DE 算法调

节的H−（43 keV）离子束，当 F1的电流增加至 42.4 μA

时，由图 4 可看出，F2 的电流可提升至 27.3 μA，

此时的传输效率可以达到 62%，调束时间约为

17 min。 

2.2.2　DE算法的优化　由 2.2.1节可知，H−（43 keV）

离子束的寻优效果与传统的人工调束相比，调束

优化时间大大缩短，但束流的传输效率并没有明

显增强。因此，本文要对 DE 算法的性能进行优

化。根据初始实验数据可以看出，DE 算法主要的

控制参数包括种群规模、缩放因子和交叉率。

种群规模主要反映算法中种群信息量的大小[7]，

种群规模越大包含的种群信息越丰富，但是会增

加计算量，进而提高迭代时间；反之，种群多样性

受到限制，不利于算法求得全局最优解，甚至会导

致搜索停滞。一般情况下，对于小群体目标优化，

种群规模取值范围在 D～4D 之间，且要大于 4，否

则会影响整个算法的迭代。

在本文中，由于设备还在调试阶段，主要围绕

4 台电源（D=4）进行实验，决策变量较少，重点对

比了种群规模为 9 和 15 两种情况下的束流调优

效果，得到了如图 5 所示的束流调优曲线。从图 5

中可以观察到，NP=15 的曲线在迭代结束时并没

有明显的收敛，由此猜测 20 次迭代并没有找到最

优值，增加迭代次数至 50 次，得到了如图 6 所示

的束流调优曲线。与 NP=5 时相比，种群规模增

大后，最优值得到了显著提升。
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图 5    迭代 20次时的束流调优曲线
Fig. 5    Beam optimization curve at 20 iterations

 
在实验过程中，详细记录了不同种群规模的

调束优化时间，主要包含监测变量的采样率（约

为 300 ms）、测量延时（约为 100 ms）、控制变量的

数据刷新率（毫秒级）、PLC 数据扫描时间（约为

几十毫秒）、IOC 服务器响应时间（约为 0.5 s）以及

程序迭代时间（主要耗时）。具体而言，当种群规

模为 9 时，整个种群的迭代 20 次的调束优化时间

为 22 min，迭代 50 次的调束优化时间为 58 min；

当种群规模增至 15 时，迭代 20 次的时间延长至

38 min，迭代 50 次的时间延长至 80 min。值得注

意的是，种群规模从 9 增加到 15，寻优得到的最优

值从 35.5 μA 提升至 36.6 μA，绝对差异约为 1 μA。

尽管这一差异相对于整体优化范围而言较小，但

对于低能束流线来说，微小的变化也可能对实验

结果和束流线的性能产生显著影响，因此并不能

被忽略。

综合对比调束优化时间和寻优效果，基于优

化目标，可以得出结论：在本文中，种群规模为

9 时，能够在保证寻优效果的同时，更有效地节约

计算资源。因此，从实际应用的角度出发，NP=9
的效果更佳。

交叉率主要反映的是在交叉的过程中，子代

与父代、中间变异体之间交换信息量的大小程度[8]。

交叉率越大，信息量交换的程度越大。反之，如果

交叉率偏小，将会使种群的多样性快速减小，不利

于全局寻优。本文主要取交叉率为 0.6、0.7、0.8，
并对其寻优效果进行比较，如图 7 所示。从图 7
中可明显看出，CR=0.7时效果最佳。

相对于交叉率，缩放因子对算法性能的影响

更大，缩放因子主要影响算法的全局寻优能力 [2]。

缩放因子越小，算法对局部的搜索能力更好，缩放

因子越大，算法越能跳出局部极小点，但是收敛速

度会变慢。此外，缩放因子还影响种群的多样

性。为了探讨缩放因子的不同取值对寻优效果的

影响，分别选取了缩放因子为 0.7、0.8 和 0.9 进行

对比实验，实验结果如图 8所示。
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通过仔细观察和分析实验数据发现 ，当

F=0.8 时，寻优过程中得到的最优值相对较大。更

值得一提的是，在 F=0.8 的条件下，算法的收敛速

度也表现出明显的优势，相较于其他两个取值

（F=0.7和 F=0.9），其更快地接近了最优解。

综合考量最优值的大小和收敛速度的快慢，

在本文实验条件下，当缩放因子取值为 0.8 时，寻

优效果达到最佳。

由各个参数的实验对比可知，当 DE 算法的参

数为 NP=9、CR=0.7、F=0.8 时寻优效果较好，且满

足优化目标。根据这组参数进行了 20 次和 50 次

迭代，得到的实验结果如图 9 所示。调束优化时

间分别约为 22 min 和 58 min，由图 9 中数据可看

出，20 次迭代的最优值与 50 次迭代的最优值的差

别较小。因此，在目前决策变量不变的前提下，迭

代次数设置为 20 次时，DE 算法就能得到很好的

寻优效果，工作效率较高。 

3　结论

本文将 DE 算法引入到调束优化过程中，旨在

通过智能算法提升束流传输效果。为了验证该算

法的可行性和优化效果，在 1.7 MV 串列加速器平

台上进行了在线实验验证。在实验过程中，详细

记录了算法的运行情况，并根据实验结果对其性

能进行了针对性的提升。

实验结果表明，通过引入 DE 算法进行优化，

F2 处的束流强度得到了显著提升，最高可达到

37.5 μA。与此同时，传统的人工调束需要花费

3～4 h 才能达到 66% 的传输效率，相比之下，在没

有人工干预的情况下，束流的传输效率大幅提高，

达到了 80%，且调束优化时间大大缩短，不管串列

头部高压多大，时间都可以缩短至 22 min 左右。

这一成果不仅验证了 DE 算法在调束优化中的有

效性，也展示了该算法在提升束流传输效率方面

的巨大潜力。

此外，为了验证 DE 算法的稳定可靠性，在超

导直线加速器上对该算法进行了在线验证，并取

得了较好的优化效果。

本文仅呈现了串列加速器低能束流线的调束

工作，选取的样本参数（即决策变量）较少，这在一

定程度上限制了优化空间的探索，根据理论计算

对被调电源设置了调节范围，并通过实验验证达

到了该装置最初设定的目标优化效果，得到的最

佳解可能为局部最佳解。随着串列加速器束流线

的完善，决策变量会更加丰富，后续会对该装置继

续优化寻找全局最佳解，并基于决策变量进行进

一步探究，如决策变量与算法各参数的关系、决

策变量与调束效率的关系等，继续完善整个 1.7 MV

串列加速器束流线的调束数据。

本文研究为 DE 算法在调束优化领域的应用

提供了有力的实验支持，同时也为后续相关研究

提供了新的思路和方法。
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