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Abstract: When a severe accident occurs in a nuclear reactor core, a large amount of radioactive
aerosols exist within the containment. These radioactive aerosols deposit on the surfaces of the
containment and internal structures due to mechanisms like gravity settling and diffusion swimming,
reducing the aerosol concentration inside the containment. During severe accidents, various events can

cause gas flow within the containment, broadly categorized into two types. One type includes events
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like steam explosions, hydrogen combustion, which generate transient high-speed airflow locally; the
other type includes continuous airflow generated between different compartments of the containment,
natural convection between compartments, and steam condensation near the wall. When gas flow occurs
within the containment due to these events, previously deposited aerosols are resuspended into the air
due to fluid drag force, becoming a continuous source of radioactive aerosols. Resuspended aerosols can
then migrate with the airflow, affecting the distribution of radioactive substances within the
containment. Therefore, aerosol resuspension introduces more uncertainty into the distribution and
source term calculations of radioactive substances within the containment during severe accidents.
Visual experiments and torque balance models were employed to investigate aerosol resuspension
characteristics under different deposition conditions (relative humidity, deposition surface orientation,
deposition time) and airflow conditions (airflow velocity, transient airflow, and continuous airflow) in
this paper. Experimental results indicate that humidity in different deposition environments affects
aerosol resuspension. With increasing humidity in deposition environments, the proportion of aerosol
resuspension significantly decreases. For aerosols deposited under three humidity environments of
RH30%, RH70%, and RH98% at an airflow velocity of 60 m/s, the resuspension proportions are 93.2%,
32.5%, and 13.5%, respectively. Similarly, compared to horizontally deposited surfaces, vertically
deposited surfaces exhibit lower deposition amounts, making it difficult to form loose deposition
structures and thus reducing resuspension proportions. Aerosol deposition time also affects resuspension
proportions; as deposition time increases, aging of deposits occurs, increasing adhesion forces between
aerosols and deposition surfaces as well as among aerosols themselves, thereby decreasing aerosol
resuspension proportions. At an airflow velocity of 8 m/s, aerosol resuspension proportion for deposits
aged for 24 hours is 58.8%, whereas those aged for 72 hours decrease to 36.3%. Under the influence of
low-speed continuous airflow, small particle size aerosols underwent resuspension and were carried
downstream, whereas larger clusters underwent rolling motion, significantly reducing the median
particle size of aerosols in downstream fluids. Under high-speed transient airflow, multiple layers of
aerosols were suspended simultaneously, and clusters formed during the deposition process were carried
by the airflow, resulting in a second peak in the particle size distribution after resuspension with larger
corresponding particle sizes. Due to its greater acceleration, transient airflow generates additional
removal forces such as the Basset force, resulting in significantly higher resuspension proportions for
transient resuspension at the same velocity compared to continuous erosion resuspension.

Key words: severe accidents; aerosols; resuspension; torque balance
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Fig. 1 Experimental system for aerosol deposition and transient airflow resuspension
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Fig. 2 Schematic diagram of continuous resuspension

experimental platform
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Fig.3 Resuspension fraction of aerosols at different velocities
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