594 -SSR s S Vol. 59, No. 4
202544 H Atomic Energy Science and Technology Apr. 2025

B Tl 35+t £L e SiC R FERM B[ AR

T HELHL KR HREY, R AR

(1. BB 2B, WIFE K> 410072; 2. PUJI K24 W3, Uil BLAR 610064)

FE: DL SiC-o #- 3k 1 H 7% SR B 40 A ) 1B, C Oy Bl 1) 000 248, 2 S 300 52 g M v 7 30 0 A B o A
BRI A O, H A R A R A S R TE T E SiC AMEE)ZE B OB C B2 IR o i FH Geant4 #5E U TR [H]
JE B2 B,C ¥R )2 T M R [ BB B y ST 4 AE SiC R U I (9 BB, X AS 8] B T #i o R0 280 e Bl
YB,C VR 2R E ARk 56 RIEATELBL, BisE T SiCAME 2 K °B,C 7 i )2 R EAE . PR EI )R, {4 H “Co.
37Cs, 2Na TR DL K i 598, X SiC H#R N 28 #EAT Ty S AR I A AR o R0 B2 8, K AR TR A JE R SiC
NP TR A BE DR, A5 8 T RAE AR SRR, #E T IER v 5 5 A A BRI, BRAE T Oy BRI AT
KGR PRI SiC IR A °B,C; Geantd 525F R 2 F AL

fE 45K S: TL816 XEkERERD: A X E4 S 1000-6931(2025)04-0920-06

doi: 10.7538/yzk.2024.youxian.0595

Research of SiC Neutron Detectors

Based on Boron Carbide Conversion Materials

SUN Yiwen', TIAN Lichao', ZHANG Xiang*", YANG Xiaohu'*, XU Weili?, HU Jiali’
(1. College of Science, National University of Defense Technology, Changsha 410072, China;
2. College of Physics, Sichuan University, Chengdu 610064, China)

Abstract: In order to ensure the long-term, stable and safe operation of compact all-solid-state reactors,
real-time monitoring of neutron fluxes within the reactor is essential. Neutron flux not only reflects the
nuclear activity of the reactor, but is also directly related to the safety and efficiency of the reactor.
Among the existing neutron detector technologies, there are some limitations in the application of *He
proportional counting tubes, fission gas ionization chambers, and traditional Si and Ge semiconductor
detectors in high-temperature and strong radiation environments, such as the noise of gas detectors will
increase significantly in high-temperature environments, which affects the detection accuracy. Although
the traditional Si and Ge semiconductor detectors have good energy resolution in low temperature
environments, the leakage current becomes larger in high temperature and strong irradiation
environments, and the introduced noise will increase significantly, thus limiting their application in
extreme environments. As a wide band-gap semiconductor material, SiC detector has the characteristics
of large band gap, strong radiation resistance, high breakdown electric field strength and large saturated

electron drift velocity, which makes it have excellent high temperature resistance and radiation
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resistance in extreme environments. The purpose of this study is to design a SiC neutron detector based
on the '°B,C conversion layer and optimize its structural parameters to achieve high-precision real-time
monitoring of neutron flux in the reactor. The energy spectrum of thermal neutrons in the sensitive
volume of '°B,C coating with different thicknesses was simulated by Geant4 simulation software, and
the relationship between the energy spectrum of y rays of different energies in the sensitive volume of
SiC and the variation of thermal neutron detection efficiency with the thickness of '°B,C coating under
different thresholds were analyzed to determine the optimal thickness values of SiC epitaxial layer and
198,C conversion layer. Combined with the dismantling of the conversion layer, the SiC detector was
used to detect y rays and thermal neutrons using ®Co, *’Cs, *’Na radioactive sources and neutron
sources. By comparing the energy deposition of SiC for thermal neutron detection at different layer
thicknesses, the accuracy of the simulation results was verified and experimental basis for subsequent
applications was provided. The simulation and experimental results show that the optimal thickness of
the conversion layer is 2 um, 300 keV can be used as the screening vy ray threshold, the air gap has great
influence on the energy deposition of nuclear reaction products, and the energy resolution of SiC can
reach 2.08% when working at low pressure of 20 V. The overall results verify the feasibility of the
design parameters of the SiC neutron detector, and realize the detection of neutron energy spectrum and
flux.
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