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Design of Activated Charcoal Trap
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Abstract: Xenon (Xe) concentration and isotope ratios measurements are crucial in the nuclear
industry, nuclear safeguards supervision, frontier science and other fields. However, due to its minimal
presence in atmospheric composition, especially in atmospheric particulate matter and atmospheric
radioactive xenon samples, efficient separation of minuscule xenon presents a significant challenge.
One of the most commonly used methods is to separate xenon gases by using the principle of adsorption
temperature difference between noble gases on activated charcoal. Activated charcoal can selectively

adsorb Xe at low temperatures, making it an efficient adsorbent. Thermoelectric refrigeration
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technology based on semiconductors has the advantages of low noise, run steadily, low material
consumption, and long service life, and is widely used in spaceflight, medical care, and
biopharmaceutical industries. A compact activated charcoal trap based on technology of semiconductor
refrigeration was designed. The activated charcoal trap device is mainly composed of four parts:
adsorption module, heat conduction module, refrigeration module and heat dissipation module. In order
to improve the cooling effect of activated charcoal particles, the elasticity of copper mesh was used to
support activated charcoal particles on the stainless steel pipe wall. Xe in the mixed gas was adsorbed
by reducing the temperature of the trap, subsequently released by heating to 180 “C. After purification,
the concentration and isotope ratio of Xe were measured by Helix MC Plus static gas mass
spectrometer. Experimental results demonstrate that the lowest achieved temperature of activated
charcoal trap is —37 “C with a refrigeration time of just 180 seconds. The recovery of Xe reaches 81%
and the separation coefficient of Kr from Xe is above 188. For a sample injection of approximately
1x10713 mol, the relative standard deviation (RSD) of Xe isotope ratio analysis is 0.06%-0.12% by
Faraday tube, and the relative deviation between the measured value and certified value is —0.14%-
0.22%, excluding '%*Xe/'**Xe, 12Xe/'*2Xe, and 'Xe/!'**Xe. Among them, the relative deviation between
the measured value and the reference value of '*Xe/'*Xe, **Xe/'3*Xe and "**Xe/"**Xe is —0.03%-
0.07%. The measured results are stable and accurate, the reproducibility of the test process is good, and
no obvious isotopic fractionation is observed during sample processing and measurement. The compact
activated charcoal trap designed in this paper can be cooled swiftly and stably, with a processing time of
sample preparation about 0.5 hours. Combined with static gas mass spectrometry, it enables high
precision analysis of Xe isotope ratios, offering technical support for the monitoring of atmospheric
particulate matter and atmospheric radioactive xenon gases in nuclear safeguards and nuclear
environmental monitoring.
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Fig. 1 Scheme of noble gas separation and purification system
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Fig. 2 Scheme of activated charcoal trap device
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Fig. 3 Scheme of refrigeration and heating control process
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Table 3 Measurement results of Xe isotope ratio in abundance standard samples
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B 5 2 % (8 A AR T 22 -0.03%~0.07%.
DA S Ae e HERA, AN FE Ak 38 500 4o 7
UL BA S 04 TR B AR G . R R P Ve B
e I EL AR, B S A R AR FE RS 29 0.5 h,
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