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Abstract: In the integrated fast reactor project of the China Institute of Atomic Energy, in order to keep
the primary circuit sodium within the reactor and prevent radioactive sodium leakage, an in-reactor cold
trap is used to purify the impurities in the sodium, enabling the purification of the primary circuit
sodium inside the reactor vessel. Considering that it is impossible to use the pressure difference to feed
sodium into the equipment, the external electromagnetic pump can no longer meet the usage
requirements. The electromagnetic pump needs to be installed in the sodium pool, and the pump trench
can be filled with sodium when the equipment is put in. Therefore, to meet the purification requirements
of the in-reactor cold trap, it is necessary to develop a new in-reactor sodium pumping device. The
immersion pump needs to be installed at the bottom of the cold trap, sucking sodium from the sodium
pool and injecting it into the inner cylinder of the in-reactor cold trap through the top outlet, providing

stable and adjustable power for the cyclic purification of sodium in the cold trap. A high-temperature
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immersion pump suitable for the in-reactor cold trap was designed in this paper. The immersion pump
sucks sodium from the sodium pool and injects it into the inner cylinder of the in-reactor cold trap
through the top outlet, providing stable and adjustable power for the cyclic purification of sodium in the
cold trap. For the prototype of the high-temperature immersion pump, performance tests were carried
out in a simulated in-reactor sodium environment. The flow-head curve, flow-efficiency curve, flow-
power curve of the immersion pump under different power conditions, as well as the test values of the
temperatures of key components were obtained, and the test results were analyzed and compared with
the simulation calculation results. The results show that the developed prototype of the immersion pump
can meet the engineering requirements of a flow rate of 8 m*/h and a head of 0.2 MPa under the high-
temperature (360 °C) sodium medium environment and rated operating conditions. At the same time,
the actual temperature of the winding coil is lower than the safe operating temperature (450 °C),

meeting the design requirements. The above results provide support for further in-reactor purification
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services.
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Fig. 1 Schematic diagram of immersion pump body structure
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Table 1 Main parameters of immersion pump prototype
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Fig. 2 Electromagnetic calculation model of immersion pump
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Fig. 8 Boundary condition diagram of immersion pump

under rated condition
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Fig. 9 Temperature distribution of whole section

of immersion pump under rated condition
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Fig. 10 Temperature distribution of immersion pump winding

under rated condition
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Fig. 11 Diagram of sodium test loop after modification
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