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Abstract: The small modular fluoride-salt-cooled high-temperature reactor (FHR) has the advantages
such as high thermal efficiency, and modular transportation and installation, which integrates the
technological merits of the fourth-generation nuclear energy systems. The flow and heat transfer
characteristics of the hot channel of fuel pin in the core is important for reactor thermal-hydraulics
design and safety analysis. Focusing on the thermal-hydraulics design and safety assessment of the
integral inherently safe small fluoride-salt-cooled high-temperature advanced reactor (FuSTAR), the

three-dimensional numerical analyses of hot channel thermal-hydraulic characteristics in FuSTAR with
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four different fuel element types were carried out. The high-quality mesh generation, mesh
independence check, and turbulence model comparison for helical cruciform fuel (HCF) with axial
twisted geometry were carried out. Comparing with the experimental results, the maximum relative
error of SST k- model is 7.8%, which shows the best numerical accuracy. Hence the following
analyses adopted the SST k- model for numerical simulation. According to four candidate core design
schemes, the linear power distribution of the most heated pin calculated by neutronics simulation of
each core design scheme was adopted as the heat source of thermal-hydraulics calculation to make a
more real thermal-hydraulics assessment, and the hot spot temperature and the pressure drop
comparative analyses were conducted. The results of hot spot temperature comparative analysis show
that the peak temperatures of the four design schemes are all under the temperature limit (about
1 573 K), and the HCF_TRISOC scheme has the lowest peak temperature, which is 1 145 K. The
cladding temperature of HCF exhibits the periodic characteristic because of the changes of the lateral
thermal conductive distance, and HCF_TRISOC scheme shows the smallest temperature difference
between the fuel pellet and cladding, which maintains the most uniform temperature distribution.
Therefore, HCF_TRISOC scheme has the better heat transfer ability, and it is beneficial to reduce the
thermal stresses to improve the inherent safety of the reactor. The results of flow and pressure drop
comparative analyses show that the HCF_UZr scheme has the largest cross-flow intensity and the
smallest pressure drop, which is beneficial to strengthen heat exchange and save power of the pump.
Based on the above analysis results, among the four FuSTAR schemes, the HCF_TRISOC scheme has
the best heat transfer and safety performance, and it is proposed to be selected as the fuel element
scheme of FuSTAR. The research results in this paper obtain a reference basis for the preliminary core
design of FuSTAR, which could provide guidance for the further optimization of the core.

Key words: small modular fluoride-salt-cooled high-temperature reactor; reactor core design; hot chan-
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Table 2 Core material parameter
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Table 3 Cladding thermal property
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Table 4 Fuel pellet thermal property Table 5 Geometry parameter of fuel element
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Fig. 8 Cladding circumferential temperature disctribution

Ty FE MR 72 1) {37t B 3 ek e {1

2) AR B S A

SE USRI g Vit v /vl oy oy,
v, 4350 x Ly Rz 75 ] (9 0 3K 43 ik o 4 Bh o 52
Hh AL R R B AT SR A R I 11 R i
Pl L1 AT D, R K & /MR HCF_UZr,
HCF_TRISOS. HCF TRISOC, Rod TRISO. &M
HCF_TRISOC 75 %, 7153 1 4 £ 5 B8 B A i o 8
MRk, QN &l 12 s, B HRS 0 3 5 A4 24 R 250

TEARDG, B8R A 0 B A R T4 b, BL7E S PR L A
N - N T N EIDES 2T SN i - T A
X TR

3) RN RH ) AL

F 8 G 4 FhoJy SR O R DL B T &
#, A WL HCF_UZr J5 3640 4 o DY FEREFIBE ) &
B, AR TS HE— [l B4 S

Zi b, 5K 1247 i, HCF _UZr BB 8RR
e ABIE T 73 A5 BN TR T 22 T AR ST 1 AN TR



#5341 T S /NI G R v A IR M SRR DT = M A TR AR B O 595
UA—fb U — i HifTsR e B9
] — ] — [ -
0.82 0.89 0.96 1.04 1.11 1.18  0.95 0.97 0.98 1.00 1.01 1.03 0.00 0.01 0.02 0.00 0.11 0.22 0.33 0.44 0.50
a b 5) a b
)
amy )
, s B MR
L ik — S— e S
— — 0.77 1.05 1.32 1.60 1.87 2.15 0.00 0.05 0.09 0.11 0.16 0.22
0.54 0.67 0.81_0.94 1.08 121 097 0.98 0.99 1.00 1.01 1.02
-~ c d y -
c d
A y \
~
( )
4 / N y
\ - 4
- a—Rod_TRISO; b——HCF_TRISOS;
a——~Rod_TRISO; b——HCF_TRISOS; c HCF_UZr; d HCF_TRISOC

¢——HCF_UZr; &——HCF_TRISOC
B9 Bl S A

Fig. 9 Pellet normalized temperature distribution

i/ (m/s) HEE/(m/s)
-
0.04 0.24 0.43 0.63 0.83 1.03 0.00 0.18 0.37 0.55 0.73 0.90
. ; b R e o

4 JBE/(m/s) S JE/(m/s)

0.01 0.17 0.33 0.50 0.66 0.82 0.00 0.25 0.50 0.75 1.00 1.25

C

a——Rod_TRISO; b——HCF_TRISOS;
¢——HCF_UZr; &——HCF_TRISOC

B10  H O A0 A
Fig. 10  Outlet velocity distribution

LR UL A BT RS SR R R

4 Zig

BFXT FuSTAR & HE 1Y 4 FhfE.os 77 8, A Sk
TR AN 7 S AN R) 0 5 AR IRt oG 1 B L LA 4 200
FIE A, g B R R Gl T R, K 2
THEAS B A B R OT R4 Th 3 00 A1 AR Dy e G 1Y
BN, o5 AT IR B - A SO B3 B AR - R X
A3 o

U B2 - RSN L A A T SR A5 SRR W, 4 PP 3

B 11 7 5 R 40 A

Fig. 11  Cross-flow strength distribution
7~
]
= 6
M
£
2
=
%
ﬁ 3+ -/
1 1 1 1 1

0.03 0.06 0.09 0.12 0.15
BB E
P12 Hf AR B A U e A 2 Al
Fig. 12 Heat transfer coefficient change
with cross-flow strength

x8 HOERRBENRH

Table 8 Outlet pressure drop and friction coefficient
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