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Abstract: The tube bundle structures of steam generators in nuclear power plants are prone to damage
and failure under long-term flow impact, threatening the safe operation of the reactor system. Although
there have been many numerical studies on the flow-induced vibration of tube bundle structures, the
establishment of efficient and reliable two-way fluid-structure interaction models based on the
refinement method and the clarification of the transformation mechanism of different flow-induced
vibration mechanisms are two key scientific issues that need to be solved urgently. Thus, in order to
study the flow-induced vibration behavior of the tube bundle structures, accurately predict the critical
flow velocity for the occurrence of fluid-elastic instability, clarify the transformation mechanism of each
flow-induced vibration mechanism, and then provide data support for the design and optimization of the
tube bundle structures of the steam generators. A fluid-structure interaction computational model was
established based on the large eddy simulation (LES) method, the secondary development of user-

defined functions (UDF), combined with the local dynamic mesh deformation technology using the
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square tube bundle structures as the object of study. Based on the refined fluid-structure interaction
model of the tube bundle structures, the flow vibration calculations were carried out for the square tube
bundle structures with only the center tube as the elastic tube and compared with the experimental
results. The calculated streamwise and transverse vibration amplitudes as well as the critical flow
velocity are in good agreement with the experimental values. The dominant mechanism of flow-induced
vibration in the streamwise and transverse vibration as well as the transformation mechanism were
analyzed and investigated by combining the vibration spectral response, vibration amplitude and the
largest Lyapunov exponent. The results show that the established fluid-structure interaction
computational model can accurately predict the critical flow velocity for the occurrence of fluid-elastic
instability in the square tube bundle structures as well as the behavior of flow-induced vibration. The
calculated critical flow velocities for fluid-elastic instability are in good agreement with the
experimental values and the associated envelopes. The transverse vibration instability of the center tube
is mainly caused by a combination of vortex-induced vibration and fluid-elastic instability, while fluid-
elastic instability also occurs in the streamwise vibration. The vibrations of the center tube at different
flow velocities show a weak chaotic state. When the vibration is dominated by a single mechanism, the
largest Lyapunov exponent does not change much, while when the mechanism is transformed, the trend
of the largest Lyapunov exponent changes. The dominant mechanism of the flow-induced vibration can
be discriminated on this basis.
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Fig. 14 Lift coefficient curves and frequency spectrums
of central tube in uncoupled pure flow field at U=3.06
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Fig. 15 Vorticity cloud maps at xOy cross section
under fluid-structure coupling condition at U=3.06

100 150

AR L M REAE T T8 X6 4 8 U SR B0 R
47501 Lyapunov F850AT L g Hu iAo 48
it ) A ) B 3 it 2 LA S 07 RO EE o FE
etk 24, fix K Lyapunov #8450 (LLE) A 1E{H
BWRE RGATERIRIENK SIS, Hi K Lyapunov
FEEO R, RETRIER BEBE . SR Wolf Jrik
SR AN T[] 3t 3T a0 48 A ) R0 R [ IR B Y B K
Lyapunov 5 %, F &K fif 75 =0 nT 2 BESCik [22-
23] ANTE) 3t 3T A A I 1) RN 1) B Bl Y R K
Lyapunov 8504 A W&l 16 F1E 17 P .

H AT DA oo 45 I 1] R0 ) AR 2l 0 o
K Lyapunov 8534 KF 0, H i FEE /D, XL
RO RS I SR MREYE . NE 16 B
2 U,.<3.06 B, i 7 98 3 9 2 K Lyapunov &
B GG —H 2 D s AR a3 AR Z H
A3 AT AT AL, MR O A I 1) R Bl 32 32 i U R
F 5, BRI R LRI WAL, B Eh
75 Ak e BRI RE A2 A4 i A BE LA B R ] iR 2l 9 5
W, >4 U,>3.06 B}, Y17 % 3 i i K Lyapunov $&
BT R, T OGRS NI g R X
¢ BT o s 9 1o 41 B TR DR AR RS K, S5 2T Y

JFF RERFFH AR H59%:
10} Nﬁﬁﬂﬂﬁmﬁ 4 114
< Jiiln] LLE
8 | 112
1 ;e
q 6 S UITAY i p 107
ES Coy ed S o
= P
< 4l ) . 8 3
Kl R —
< . o
2 e 6
P
0 14

05 1.0 1.5 20 25 3.0 35 40
Ul’
Kl 16 AR E T 3 0 4% 8l i K Lyapunov $8 %1 ih 28
Fig. 16 LLE curve of streamwise
direction vibration at different velocities

10} -fﬁ@ﬂé'hﬁ s 114
» 11 LLE X /
8 » e 12
i J
i | d
6 P X 110 7
it A o
2\° P A SN 5
4 Fau g -
k. /.(‘y»’
2 > ¥ ] 6
o >
/,Y Yo
e o ‘.‘
0 y 4

05 1.0 1.5 20 25 3.0 35 40
Uf
17 AR T A% 1 41 sl e K Lyapunov $8 % i 28
Fig. 17 LLE curve of transverse
direction vibration at different velocities

A3 AT AT LS, O A 3 1] 3R s AL B K AR B AR,
F Jift DAL AR 2 72 Sl U A LR R B, O B ¢ PR AR
PR ER F T AR UL B AN B ) 3R 3 R G
ABES, (B H T RIS & X oo 8 1 2 ) 2 808
I 2 S 1) 15 B AR 2%

M 17 AT EH, 24 U<1.31 I, PR sl 1 fe
K Lyapunov & BUEEA PR FF AN AR, 33 3R B I A 1]
PRENZ H—mBIRIE E T 456 Z 000
A, I A 1] % 3h 2 B2 I R T 2 1.31<
U,<1.93 B, % 7] 9% 3l B9 F K Lyapunov 8 £
B8R, 3 3R WY b Ao A ) B 3 i B 3 L A A
A% BEG AT AT, R ] 4 3 3 S LB
FF ity F it DA AR o I G 7 B A [ R ) 4R R
FFU /NI B R K, HEAE Ui=1.93 &bk 3] 55 K AH,
X I ) 4% 30 1% B K Lyapunov 48 0t 78 I Ak 35
A RAE . 24 1.93<U,<<2.45 I}, H 1 4% 3 14 o
K Lyapunov FEEGRE N, XTI Z HIA /3T, LA A
P B0 1) 32 T LI h el e 10 ot 1) 38 A L K AR



553

PN A5 2 IE J5 TE 45 SR 25 4 i SR B B AT 5T

1053

AR, IFHE U~2.19 B R A AR SRR R AR . e
Ui, e Hs A [ 4R Bl b T — il LR, RS BTR
RS AR HIZL . ¥ 2.45<U,<3.06 B, fif
] 9% 3l i) B K Lyapunov 3880 3G K, X R
B I B R [ B Bl AT e R B MG K, S5 A 1R 13 T
R, T I TR PR A o iR B 0 R B O B — i 5 A
[ G AR AH B A A 0, R B R
o 02 U, A ) IR 30 09 S AR AT RE 2 R T IR AR N
AR B 2R R ] S Y, A 1] iR R A R L R
SBR[ i BN TR L AR BE R R . Y U.>3.06 B,
K% 1) 9% 35 (19 i K Lyapunov $5 5 S i /N 5
YRZEHE R 54 B 13 RTAN, A A ) 41 2 A5
BT AR W IRAS, TR A6 3R I R0 32 2 AR
A, RIRE ) 4 20 00 8 O RO S A R . X R
FF A 1) 9 SN LRI 4y El 308 DB o A A R 1 R AR
e [7] 5= 5 [ i 00 5 % 0 AR R R R L W] 2 e e
A5 AR T IR AN BT ) B 3 &R G AR, S B0
Tv1) 41 Wd 0 282 1 K, 9 T 5 BORK 1] 4% B0 Y B K Lya-
punov 5 8L L IF IR AREEHE K

g5 ERTR, MR R R S
BF, B 3l i TR R B AR AL AN K, T > i B iR sh AL B
RS, PR IR TR B s K R AR, A it
AT DI A R 5 A0 i 2 Y = S LA A DL A T IX
a3, (HELAR ) I BOPR S ML PR B4 A PR | A
GRS E BT

3 &g

AR SCR IR IR, 7 ik 7 T = 4ERS A e
LSRG U AR A TSR, S BT M ks B sl i
I K Lyapunov $8 £ 40 A 45 o 25 ¥4 I £k sh AL B
AR FIE N, S5 R IE . WS TR T IE TR A R
SRR BRSNS A, EEPR AR AT .

1) A SCHE ST B3 TR 40 A0 A ) 4 SR S5 P I
R BN A AR AT LR A A i Bk sh AT A i
AT AR T, P 2 R AR P S K A TR ) b, ke
AR PR A Y 1E D T A SR AE A R U, 1T AR
N Uy sim 219, 5 I HAHIRZE LN 2.67%.

2) MR IR sh AR v LAAS L, T AR SCAY IE
BB R A5, b A8 R 1) I 3 2% B 32 i At
I R0 A L 2 Rt ) S 3 [ 9 ) i B
SR TR PR R AR

3) MRS A K Lyapunov 3550/ B K FH, N

[F) 3 2T HO A R B 1 S S S IR RS, YR
Bl B — I SR S WL R 3 S 6, $iR 8 i K Lya-
punov 8 EUAS A K, T2 i BUIR S HLEE K A= 7 A%
if, $% sl i B K Lyapunov 8 5028 fb #a #4544 % A=A
Ak, AT LA o 3t SR 3 = S LS TR

S k-

[1] CHANG S H. Nuclear power plants[M]. Rijeka, Croatia:
InTech, 2012: 71-128.

[2] LONGATTE E, BENDJEDDOU Z, SOULI M. Methods
for numerical study of tube bundle vibrations in cross-
flows[J]. Journal of Fluids and Structures, 2003, 18(5):
513-528.

[3] HASSAN M, GERBER A, OMAR H. Numerical estima-
tion of fluidelastic instability in tube arrays[J]. Journal of
Pressure Vessel Technology, 2010, 132(4): 041307.

[4] CHEN S S. Instability mechanisms and stability criteria
of a group of circular cylinders subjected to cross-flow,
Part I : Theory[J]. Journal of Vibration and Acoustics,
1983, 105(1): 51-58.

[5] HOURIJH, GHADIRI D B. Numerical prediction of flu-
id-elastic instability in normal triangular tube bundles
with multiple flexible circular cylinders[J]. Journal of
Fluids Engineering, 2013, 135(3): 031102.

[6] SHINDE V, LONGATTE E, BAJ F. Large eddy simula-
tion of fluid-elastic instability in square normal cylinder
array[J]. Journal of Pressure Vessel Technology, 2018,
140(4): 041301.

[7] NICOUD F, DUCROS F. Subgrid-scale stress modelling
based on the square of the velocity gradient tensor[J].
Flow, Turbulence and Combustion, 1999, 62(3): 183-200.

(81 #athae, Midk, MINA, &5 VU ST AR Bk

TG b A Al 0 23 R A 5T D). 4% 3 ) A%, 2022,
43(S1): 103-110.
YANG Shihao, LAI Jiang, TAN Tiancai, et al. Study on
fundamental mechanical problems in fluidelastic instabil-
ity of steam generator heat transfer tube bundles[J]. Nu-
clear Power Engineering, 2022, 43(S1): 103-110(in Chi-
nese).

[9] HILBER H M, HUGHES T J, TAYLOR R L. Improved
numerical dissipation for time integration algorithms in
structural dynamics[J]. Earthquake Engineering & Struc-
tural Dynamics, 1977, 5(3): 283-292.

L10] FhA0h, 25 EME, PhATR, 45 SE TR AL 2 s A
T PR Bl BUE 92 (0], WA ZR B TR R A 2 4R, 2023,
44(12): 2119-2127.

SUN Junshuai, LI Xupeng, SUN Rulei, et al. A numeri-


https://doi.org/10.1016/j.jfluidstructs.2003.08.010
https://doi.org/10.1115/1.4002112
https://doi.org/10.1115/1.4002112
https://doi.org/10.1115/1.3269066
https://doi.org/10.1115/1.4023298
https://doi.org/10.1115/1.4023298
https://doi.org/10.1115/1.4040417
https://doi.org/10.1023/A:1009995426001
https://doi.org/10.11990/jheu.202309023

1054

FETRERAHAR 5ok

11]

[12]

[13]

[14]

[15]

[16]

cal study of vortex-induced vibration of heat exchanger
tubebased on refined modeling[J]. Journal of Harbin En-
gineering University, 2023, 44(12): 2119-2127(in Chi-
nese).

HE S, WANG M, ZHANG J, et al. A deep-learning re-
duced-order model for thermal hydraulic characteristics
rapid estimation of steam generators[J]. International
Journal of Heat and Mass Transfer, 2022, 198: 123424.
ST, 155G, MR, S5 A LR R ER S B e
SRHM]. E#: IRESERAE T R, 2018: 5-6.
X5z, JE W, R, AP1000 5 KIS 2R L
AR S AT, SRAR L A, 2013, 41(2): 417-419.
LIU Liang, ZHOU Tao, SONG Minggqiang. Comparative
analysis of AP1000 and steam generator of Daya Bay Nu-
clear Power Plant[J]. East China Electric Power, 2013,
41(2): 417-419(in Chinese).

LIANG C, PAPADAKIS G. Large eddy simulation of
cross-flow through a staggered tube bundle at subcritical
Reynolds number[J]. Journal of Fluids and Structures,
2007, 23(8): 1215-1230.

SHINDE V, MARCEL T, HOARAU Y, et al. Numerical
simulation of the fluid—structure interaction in a tube ar-
ray under cross flow at moderate and high Reynolds num-
ber[J]. Journal of Fluids and Structures, 2014, 47: 99-113.
BROCKMEYER L, MERZARI E, SOLBERG J, et al.

High fidelity simulation and validation of crossflow

[17]

[18]

[19]

[20]

[21]

[22]

(23]

through a tube bundle and the onset of vibration[J]. Inter-
national Journal of Non-linear Mechanics, 2019, 117:
103231.

Ml B RS R SRS R TS AL ST D). K

KHR, 2018.

PETTIGREW M J, TAYLOR C E, FISHER N J. Flow-
induced vibration handbook for nuclear and process
equipment[M]. Hoboken, NJ: John Wiley & Sons, Inc. ,
2022: 183-218.

CHEN S S. Guidelines for the instability flow velocity of
tube arrays in crossflow[J]. Journal of Sound and Vibra-
tion, 1984, 93(3): 439-455.

OLINTO C R, INDRUSIAK M L S, ENDRES L A M, et
al. Experimental study of the characteristics of the flow in
the first rows of tube banks[J]. Nuclear Engineering and
Design, 2009, 239(10): 2022-2034.

INDRUSIAK M L S, GOULART J V, OLINTO C R, et
al. Wavelet time-frequency analysis of accelerating and
decelerating flows in a tube bank[J]. Nuclear Engineer-
ing and Design, 2005, 235(17/18/19): 1875-1887.

WOLF A, SWIFT J B, SWINNEY H L, et al. Determin-
ing Lyapunov exponents from a time series[J]. Physica D:
Nonlinear Phenomena, 1985, 16(3): 285-317.

B, B 22, Br AR IR I [ 51 73 A7 b HC 0
FHIMY. 200 BRBUKE R, 2002: 72-84.


https://doi.org/10.11990/jheu.202309023
https://doi.org/10.11990/jheu.202309023
https://doi.org/10.11990/jheu.202309023
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123424
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123424
https://doi.org/10.1016/j.jfluidstructs.2007.05.004
https://doi.org/10.1016/j.jfluidstructs.2014.02.013
https://doi.org/10.1016/j.ijnonlinmec.2019.07.016
https://doi.org/10.1016/j.ijnonlinmec.2019.07.016
https://doi.org/10.1016/j.ijnonlinmec.2019.07.016
https://doi.org/10.1016/j.ijnonlinmec.2019.07.016
https://doi.org/10.1016/0022-460X(84)90340-7
https://doi.org/10.1016/0022-460X(84)90340-7
https://doi.org/10.1016/0022-460X(84)90340-7
https://doi.org/10.1016/j.nucengdes.2009.05.017
https://doi.org/10.1016/j.nucengdes.2009.05.017
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9

	1 数值模型
	1.1 流体控制方程
	1.2 结构动力学方程
	1.3 动网格控制方程
	1.4 流固耦合模型
	1.5 正方形管束结构几何模型

	2 结果和讨论
	2.1 网格敏感性分析
	2.2 网格尺寸合理性分析
	2.3 时间步长合理性分析
	2.4 管束结构流固耦合计算模型验证
	2.5 管束结构流致振动特性分析

	3 结论
	参考文献

