5943 T -SSR s S Vol. 59, Suppl.
202543 H Atomic Energy Science and Technology Mar. 2025

ET U RHEREE S XERENIEHE
KEHNXBSEEEMR

> A} = e — D
EHF, KB, B, 0%
(HFEEFRERFAIF S BE 2 TR BT, db st 102413)

T Jm B sCAR B 3 (5 i 2 B 0 — i BB 005 a0 ok st v R0 IR B T v Al % AR BB B4 e Y i e ik A%, T
VIR Z2 Fp T OR 30 F 5, BEAS IR I — IR AL PR ME 1Y 2 & o AR SO 26 B Sl A i R R AT 43 M, 5 % T I RE 3N 5
2 X JO PR S R RSO I S S B, A S B R TR R L me Ry A ] R ] RIS HE RN (A . Ol B
05 HE AN BRSLR T P T B8 30 R B0 ) 2 B PR SR TE R B AT TR T M S O RO R R S A R
JBE LLBA i JE B BE T B Sy i OR TG (R 3P SR AR IS AR KB TR 9, A TSSO AT AR T T R R R R S S
SR B SR A i 7 8] 5 %k 7 LR PR e e e LIRLEE N BR O 576.5 °C, JE BLIREE IR 606.3 C.
WFFE 22 0, B0A ek B 0RR G 4 A6 T2 3R B DX 0] P ) B o et A8 AR AT D0 BB 6 Tl 2 K, X RS B 2 &
PRy, 7T 55 gede BT

KB AL s dE; TR TG SRR T AR B 2

FE S ES: TL364.2 XERARERD: A X EHS: 1000-6931(2025)S1-0080-09

doi: 10.7538/yzk.2024.youxian.0878
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Abstract: Passive shutdown procedures can be initiated by the Curie point passive shutdown device,
which is a sophisticated reactor safety mechanism that augments the coolant temperature at the core
outlet to ensure safety. With this innovative approach, unprotected accidents can be effectively
addressed, ensuring the robustness and safety of integrated fast reactor. Enhancing the overall safety and
operational stability of the reactor system is the primary objective of this device. To gain a clearer
understanding of the pivotal parameters that influence the efficacy of the Curie point passive shutdown
device in mitigating the consequences of unprotected accidents, a meticulous analysis of the power
plant’s operational procedures was undertaken. The thorough examination covered multiple vital
aspects, such as establishing the lower threshold for Curie temperature, evaluating response time,
measuring fall time of control rods, and assessing the reactivity worth of the stop rod. In order to ensure

timely and effective reactor shutdown, these parameters were essential in the non-dynamic shutdown
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process and played a crucial role. In this paper, a advanced computational fluid dynamics (CFD)

software was used to ensured that unintentional rod ejection during routine reactor operations was

avoided. By using this sophisticated tool, the temperature of temperature-sensitive alloys located in the

core outlet region could accurately calculated, thereby determining the precise lower boundary for Curie

temperature. Furthermore, an accident analysis program was employed to ascertain the maximum

allowable response time required for rod dropping in the event of an unprotected accident, which in turn

facilitated the establishment of a corresponding upper limit for Curie temperature. Following an

exhaustive investigation, it was unequivocally confirmed that temperature-sensitive alloy materials

exhibit favorable magnetic flux variations within the prescribed temperature range. This significant

finding underscores the practical feasibility and dependability of the Curie point passive shutdown

device when operated within its specified parameters. Consequently, the delineation of a reasonable

range for these identified key parameters offers invaluable insights for subsequent iterations of

equipment design. This ensures that Curie point passive shutdown devices remain compliant with the

most stringent safety and performance benchmarks in fast reactor applications, thereby safeguarding the

integrity and reliability of nuclear power systems.
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Fig. 1 Variation of adsorption force in Curie point passive
shutdown device with temperature
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