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Abstract: The 9Cr-1Mo ferrite-martensite (FM) heat-resistant steel is one of the main candidate
materials for sodium-cooled fast reactor process pipeline and steam generator. Compared to austenitic
stainless steels, FM steel exhibits higher thermal conductivity, lower thermal expansion coefficient,
anti-irradiation properties and lower cost. As the designing lifespan of commercial reactors extends to
60 years, higher requirements of microstructure stability under high-temperature environments are
proposed to ensure the long-term creep strength of FM steel. Through multi-scale characterization and
mechanical testing, this study investigates the effect of normalizing and tempering processes on the
microstructure and mechanical properties of 9Cr-1Mo FM steel used in sodium-cooled fast reactor

process pipelines. By comparing the microstructure evolution and mechanical performance under
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varying normalizing temperatures (1 040, 1 060, 1 080 °C), tempering temperatures (730, 750, 770, 800 °C)
and tempering time (1-4 h), combined with scanning electron microscopy (SEM), transmission electron
microscopy (TEM) and electron backscatter diffraction (EBSD), the mechanisms of heat treatment on
grain size, precipitate distribution, and dislocation density were elucidated. The results show that
increasing the normalizing temperature from 1 040 °C to 1 060 °C enhances the dissolution of alloying
elements, which facilitates the precipitation of dispersed M,,C4 carbides with the average size decreases
from (150+30) nm to (138+19) nm after tempering, thereby improving precipitation strengthening and
elevating both room-temperature and high-temperature strength by 20 MPa. However, further increasing
the normalizing temperature to 1 080 °C shows limited influence on mechanical properties and prior
austenitic grain size. Besides, higher tempering temperatures (730 °C—770 °C) promotes the coalescence
of martensitic laths into blocky, which reduces total grain boundary length by 34% and dislocation
density. This leads to a decline in strength but enhances long-term creep resistance due to optimized
grain boundaries and homogeneous precipitates distribution. In addition, extending tempering time
promotes the precipitation of M,;C4 and MX phases, which leads to the decrement of matrix strength
and the increment of impact energy. The mechanical properties are not changed significantly since the
tempering time extended to more than 2 h or the post-welding heat treatment time extended to more
than 4 h. The mechanical properties tend to remain stable confirming the engineering applicability of
the optimized process. Based on above studies, the quantitative relationships between heat treatment
parameters and microstructure evolution in FM steel are established, and the recommended heat
treatment regime of FM steel used in processed pipeline is 1 060 °Cx1 h normalizing followed by
770 “Cx2 h tempering, which effectively promotes the dispersion of M,;C, and MX phases, reduces
grain boundary length and dislocation density and balances high strength with long-term microstructure
stability. This work provides theoretical support for determining heat treatment processes and
engineering application of low thermal expansion pipeline.

Key words: sodium-cooled fast reactor; process pipeline; ferrite-martensite heat resistant steel; heat

treatment process
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Table 1 Composition of low thermal expansion
ferrite-martensite heat resistant steel
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Fig. 1 Equilibrium phase diagram of low expansion FM steel
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Fig. 2 Heat treatment processes of testing steel
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Table 2 Heat treatment designing of testing steel
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Fig.3 Effect of normalizing temperature on mechanical properties
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Fig. 4 Effect of normalizing temperature on microstructures
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Fig. 6  Effect of tempering temperature on mechanical properties
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