
 

面向铅冷快堆主泵数字孪生的
多输入 PINN 代理模型

郭译文，李良星*，向祖涛，桂家彬，石　尚，雷振欣，许向阳
（西安交通大学 动力工程多相流国家重点实验室，陕西 西安　710049）

摘要：本文开发了具有多输入结构的物理信息神经网络（PINN）代理模型，快速预测铅冷快堆（LFR）主泵在

不同工况下的流场，用于数字孪生系统的状态追踪模块中。对 PINN结构进行调整，以适应主泵设计的需

求，并通过与传统计算流体动力学（CFD）方法对比来验证模型的性能。结果显示，该模型在识别流场细节

方面表现出良好的能力，与 CFD计算结果的相对误差基本低于 20%，单工况预测时间约为 0.273 s，预测速

度提高了 15 000倍，训练时间与 2～3个工况的 CFD模拟相当。PINN代理模型能有效拟合非线性训练数

据，具有较高的预测精度和泛化能力，为 LFR主泵设计提供了一种快速、高效的流场预测工具，可作为相

关数字孪生软件系统中的状态追踪模块。
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Multi-input PINN Surrogate Model for Digital Twin
of Lead-cooled Fast Reactor Main Pump
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Abstract: The main coolant pump (MCP) of lead-cooled fast reactor (LFR) faces significant corrosion
challenges  due  to  the  high-temperature,  high-density  coolant  flow  and  heat  transfer  within  complex
geometric  domains.  Consequently,  detailed  attention  to  the  internal  flow  field  of  the  pump  is  crucial
during the design process. Currently, the design of MCP for LFR heavily relies on extensive numerical
simulations,  requiring  the  generation  of  high-quality  meshes  and  the  discretization  of  governing
equations  for  computation.  This  approach  results  in  high  computational  costs  and  prolonged  design
cycles. To address the issues, a physics-informed neural network (PINN) surrogate model with a multi-
input structure was developed and applied it for rapid prediction of the flow field of the MPC in LFR
under  different  operating conditions,  to  be  used in  the  state  tracking module  of  a  digital  twin system.
The surrogate model was proposed for overcoming the limitations of traditional numerical simulations,
such as high computational complexity and large data demands, while enhancing model response speed
and  reducing  storage  requirements.  First,  the  flow  field  within  an  axial  lead-bismuth  eutectic  (LBE)
pump was modeled and the loss  function for  training the multi-input  PINN surrogate model  based on
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the  governing equations  of  the  pump was derived.  Subsequently,  the  accuracy of  the  surrogate  model
was  validated  by  comparing  its  reconstruction  of  the  flow  field  under  several  specific  operating
conditions with the results obtained from traditional computational fluid dynamics (CFD) simulations.
Additionally,  the  computational  time  of  both  approaches  was  compared.  The  results  show  that  the
model demonstrates good ability in identifying flow field details near the rotating blades which suffer
from the most corrosive environment in the whole pump, with a relative error to CFD calculation results
of generally less than 20%, a prediction time of approximately 0.273 seconds per operating condition,
and a prediction speed improvement of 15 000 times. The training time is equivalent to that of 2 to 3
CFD simulations  for  different  operating  conditions.  Furthermore,  the  model  parameters  for  predicting
the  flow field  across  the  entire  flow passage  of  the  MCP under  arbitrary  operating  conditions  require
only 286 kB, whereas the flow field data generated by CFD for a single operating condition amount to
413 MB. The conclusion indicates that  the surrogate model  can effectively fit  nonlinear training data,
with  high prediction accuracy and generalization capability,  providing a  rapid  and efficient  flow field
prediction tool for the design of the MCP of LFRs, which can be used as the state tracking module in the
corresponding digital twin software.
Key words: lead-cooled fast reactor; main coolant pump; digital twin; physics-informed neural network

铅冷快堆（LFR）是一种以液态铅或铅铋共晶

合金（LBE）作为冷却剂的核反应堆，具有良好热

中子性能、高化学稳定性和固有的安全优势，被

认为是第 4代核电站最具前景的技术解决方案[1-3]。

由于冷却剂高温、高密度的特性会导致结构材料

腐蚀，妨碍主泵的长周期不换料运行目标的实

现 [4-5]，传统的水泵设计策略和经验方法不适用于

更关注流场状态的 LFR主泵的设计。

目前 LFR 主泵的设计优化主要依赖于耗时的

计算流体动力学（CFD）模拟或昂贵的实验测试。

这些方法通过调整各种设计参数来验证不同工况

下泵的水力性能，以确定最优设计配置 [6-8]。由于

使用 CFD 模拟或实验的成本高昂，每次只能获得

较少参数下的泵内流场，导致 LFR 主泵的设计仍

处于经验阶段。这些传统方法获得的模拟数据是

离散的，模拟精度和速度之间存在冲突，对于具有

众多潜在耦合参数的高度非线性的 LFR 主泵设

计，显然容易错过最优解。

为了解决这种问题，将数字孪生框架引入

LFR 主泵设计中是可行的方案。数字孪生于传统

工业向数字化转型的过程中出现，能够提供数字

虚拟资产和物理实体状态的双向通信。在数字孪

生中，数字系统能够对物理系统的状态进行即时

跟踪，瞬间得到仿真结果，并及时进行优化反馈，

求出最优设计参数 [9-10]。数字孪生具有状态追踪

和优化反馈两大功能，若将其应用于 LFR 主泵设

计，可以实现对不同状态下的泵内流场进行即时

求解，使得以较小的时间成本应用优化算法进行

结构或控制方案的设计成为可能，兼顾精度和效

率。因此应用数字孪生技术能够成体系地开发

LFR 主泵的仿真、设计和控制功能，对铅冷快堆

的发展有重要意义。

在 LFR 主泵的数字孪生系统构建中，代理模

型具有重要意义。由于 LFR主泵的优化过程涉及

基于各种参数集的物理场迭代计算目标函数和约

束条件，以确定最合适的参数。当使用传统的

CFD 方法计算这些目标函数和约束条件时，由于

需要在网格上求解离散的偏微分方程（PDE），优

化过程变得极其耗时。而在 LFR 主泵数字孪生

中，代理模型提供了与 CFD 相比显著降低计算成

本的物理系统的准确动态表示，便于在 LFR 主泵

的设计中应用传统优化算法。一种典型的代理模

型方法为物理信息神经网络（PINN）[11]，然而在本

文讨论的场景下使用 PINN 存在局限性。在主泵

的设计过程中，需要迭代求解各输入参数下的内

部流场，然后计算目标函数和约束条件，以确定最

优设计。而 PINN的输入仅包含时空坐标，因此当

这些参数发生变化时，网络需要重新训练，这不符

合代理模型对泵内流场实时状态跟踪的要求。故

本文以 LFR轴流主泵在不同工况下的泵内流场预
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测为例，对 PINN 结构进行调整，用以加速不同参

数下的主泵流场即时预测，更好地适应 LFR 主泵

的设计。 

1　模型构建 

1.1　场景建模

本文以一台 LFR 轴流主泵为例进行建模分

析，工质为 LBE，其中 Pb、Bi 的质量分数分别为

44.5% 和 55.5%，泵内工质视为恒温 350 ℃[12]，该

温度下 LBE 的密度为 10 278 kg/m3，动力黏度为

0.001 6 Pa∙s。该泵叶片的安装参数如表 1 所列。

表 1中：β1、β2 分别为动叶进、出口液流角，对应于

叶栅流面相对速度和圆周速度间的夹角；α1、α2 分

别为导叶的进、出口角，对应于叶栅流面上绝对

速度和圆周速度间的夹角 [12]；圆柱层从 0.00 到

1.00 表示从轮毂到外缘的径向位置的归一化。

LFR 轴流主泵流道结构如图 1 所示，其中进出口

处导流罩的表面均在球面上。

qV ω

(ω,qV)

在主泵中，工质大致沿着 z 轴正方向流动，从

入口流道流入泵内，然后在动叶段中获得原动机

旋转的能量，转化为自身的动能和压力能，在导叶

段被整流，部分动能逐渐转化为压力能，最终经出

口流道流出泵体，进入反应堆堆芯之中。整个过

程中泵的作用主要表现为提升工质的动能和压力

能，使得反应堆堆芯能够获得足够的冷却剂以确

保堆芯得到持续稳定的冷却，从而确保反应堆系

统能稳定向外输出能量，保证系统安全。设入口

总压为 0，出口体积流量由堆芯需求决定，记为

 ，动叶转速为    。在泵结构参数给定的情况下，

希望迅速求解不同工况参数组合    下主泵内

稳态流场的分布情况。 

1.2　网络结构和损失函数定义

N(∇,β,θ)
r β

θ

定义物理信息神经网络    用于求解泵

内 N-S 方程。其中    为空间坐标，    为工况参数，

 为网络待调参数。该神经网络目的是求解不同

工况参数下，主泵内空间各点在笛卡尔坐标系下

的速度分量 u、v、w 及压强 p。由于空间坐标为连

续变量，而工况参数相对来说更为稀疏，将空间坐

标和工况参数输入进行拆分，可以针对性地加深

工况参数的输入层以提升模型对工况参数的敏感

性，而不至于使得网络参数过多导致训练时间较

长。定义网络结构如图 2 所示。图 2 中： x、 y、

z 为空间坐标，m。

r β

θ

该模型以空间坐标    和工况参数    为输入，将

二者分别经不同的全连接神经网络映射后合并映

射结果，并再通过一个新的全连接神经网络将合并

后的结果映射为速度分量 u、v、w 和压强 p。网络

中各全连接层的参数共同组成网络待调参数    。

认为泵内 LBE 为不可压缩流动，根据稳态 N-

S方程定义如下函数：

Φ (r,β,θ) = ∂
uk

∂xk

F (r,β,θ) = uk
∂u
∂xk
+

1
ρLBE
· ∂p
∂x
− fx − νLBE ·

∂
2u

∂xk ∂xk

G (r,β,θ) = uk
∂v
∂xk
+

1
ρLBE
· ∂p
∂y
− fy− νLBE ·

∂
2v

∂xk ∂xk

H (r,β,θ) = uk
∂w
∂xk
+

1
ρLBE
· ∂p
∂z
− fz− νLBE ·

∂
2w

∂xk ∂xk

（1）
式中：Φ 为连续性方程损失函数；F、G、H 分别为

 

表 1   LFR 轴流主泵叶片安装设计

Table 1    Mounting design of blade
in LFR axial pump

圆柱层
动叶（叶片数 6） 导叶（叶片数 10）

β1 /rad β2 /rad 厚度/mm α1 /rad α2 /rad 厚度/mm

0.00 0.752 1.546 3.341 1.083 1.535 4.000

0.25 0.702 1.347 3.206 1.161 1.553 4.000

0.50 0.679 1.243 3.141 1.225 1.571 4.000

0.75 0.644 1.151 3.145 1.109 1.571 4.000

1.00 0.616 1.092 3.219 0.993 1.571 4.000

 

出口流道

导叶

轴间距

动叶

入口流道

a

3
0
0

3
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1
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1
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1
1
0

1
8
9

242

242

320

b

z轴方向

单位: mm

a——流道结构；b——各部分设计参数

图 1    LFR轴流主泵流道结构

Fig. 1    Structure of flow channel in LFR axial pump
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uk

xk

ρLBE

νLBE

x、y、z 方向动量方程损失函数；    为指标表示下

的速度，k=1、2、3 对应 u、v、w，m∙s−1；    为指标表

示下的坐标，k=1、2、3 对应 x、y、z，m；fx、fy、fz 分

别为 x、y、z 方向的质量力分量，m∙s−2；    为 LBE

的密度，kg∙m−3；    为 LBE的运动黏度，m2∙s−1。

F = [Φ,F,G,H]T f = fxi+ fy j+ fz k

i、 j、k

−gk

Φ、F、G、H 越接近 0，表明网络越接近控制

方程的解，定义        ，  

为体积力项，其中    为笛卡尔坐标系下的单

位矢量，在非动叶区域中为    ，而对于动叶区

域，采用固连在动叶轮上的坐标系表示流速，此区

域体积力项为： 
fx = ω (ωx+2v)

fy = ω (ωy−2u)

fz = −g

（2）

式中，g 为重力加速度，本文取 9.8 m/s2。
{(ri,βi)}Ni=1

MSEf

则在求解域内生成控制点集合    ，从

而定义方程损失函数    ：

MSEf (θ) =
1
N

N∑
i=1

||Φ (ri,βi,θ)+F (ri,βi,θ)+

G (ri,βi,θ)+H (ri,βi,θ) ||2 （3）

式中，N 为训练集采样点数。

{(ri,βi, yi)}Ni=1

yi = (ui,vi,wi, pi)

MSEt

该损失函数描述的是神经网络对泵内流体运

动控制方程的求解完成度。利用传统 CFD 运算

控制点上的流场数据    构建训练集，其

中    ，为通过 Fluent 参数化仿真采集

的数值模拟结果，据此定义采样损失函数    ：

MSEt (θ) =
1
N

N∑
i=1

||N（ri,βi,θ）− yi||
2
（4）

 

1.3　网络训练

θ MSEf (θ) MSEt (θ)

MSEf (θ)

MSEt (θ) MSEf (θ) θ

模型需要对控制方程进行求解，同时拟合训练

集，通过调节网络待调参数    使    和  

收敛。由于    收敛过程中求解的稳态控制

方程与 CFD 训练集生成所用方程不完全一致，

CFD 引入了伪瞬态以体现湍流特征，而 PINN 还

需求解稳态控制方程，因此这两个目标在接近收

敛时略有冲突，采用 Yu 等 [13] 提出的冲突梯度法

对网络进行训练，流程如图 3 所示。图 3 中：g t、

gf 分别为    和    对网络待调参数    的

梯度；gpc 为对互相存在冲突的 gt、gf 进行施密特

正交化处理后的梯度。 

1.4　边界条件处理

由于训练集中有一定量的位于壁面上点的流

 

输入工况参数
β=(ω, qV)

输入维度
16+8=24

输入空间坐标
r=(x, y, z)

全连接层21

64节点

全连接层22

32节点
合并层

全连接层23

16节点

全连接层1

16节点

全连接层2

8节点

全连接层3

4节点

输出流速u、v、 w

和压强p

全连接层24

8节点

全连接层11

64节点

全连接层12

32节点

全连接层13

16节点

图 2    网络结构设计

Fig. 2    Structural design of neural network

 

开始

MSEt(θ) 梯度gt

梯度gfMSEf(θ)

< >gf, gt

>0？

是

是

结束

收敛?

否

否

gpc=gf

gt+gpc< >gf, gt
gpc=gf −

||gt||
2
gt

沿以下方向进行
梯度下降

图 3    冲突梯度法训练流程[13]

Fig. 3    Training process via project conflicting gradients method[13]
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MSEt (θ)场数据作为保障，训练模型过程中使    收

敛的过程足以保证无滑移边界条件在 PINN 代理

模型中的实现，因此在边界条件定义时可只考虑

进出口处的边界条件。在训练过程中网络输出需

重新定义为：

y(r,β,θ) := A(r) ·N(r,β,θ)+B (r,β) （5）

A(r)

z = 0

z = H

式中，    为边界选择函数，只需按 z 轴坐标定

义即可。若入口截面处    ，则在出口截面处

 ，于是定义阶跃函数：

A(r) = σ (z, κ)−σ (z−H, κ) （6）

σ (z, κ)
κ

式中：H 为泵进出口截面间距，m；    为考虑到

流动连续性而设置的平滑阶跃函数，其中    为一个

很大的正数，本文中取 1 000，其定义如下。

σ (z, κ) = 1
1+ e−κz

（7）

B (r,β)

Bi (r,β) Bo (r,β)

   用于对边界条件进行拟合，将其分为

进口条件    和出口条件    ，定义如下：

B (r,β) =


[1−σ (z, κ)] Bi (r,β) z = 0

0 z < {0,H}
σ (z−H, κ) Bo (r,β) z = H

（8）

对于进口总压边界条件，有：

Bi (r,β) =
ï

0,0,w (r,β) ,−1
2
ρLBEw2 (r,β)

ò
（9）

对于出口流量边界条件，有：

Bo (r,β) =
ï

0,0,
qV

Ao
, p (r,β)

ò
（10）

w (r,β) β r

p (r,β) β r

式中：    为特定工况参数    下坐标    处沿 z 方

向的流速，m/s；    为特定工况参数    下坐标  

处的压力，Pa；Ao 为出口截面面积，m2。 

2　数值结果 

2.1　仿真计算设置

在 Ansys Fluent 中对 CFD 计算进行设置：采

用 SST k-ω 模型描述泵内湍流，求解方法设置为

Coupled 算法，梯度采用基于节点的 Green-Gauss

法计算，压力采用二阶表达式，各输运项以二阶迎

风差分进行离散，伪瞬态时间尺度因子取 10，高阶

松弛因子取 0.25 [14]。在此设置下，以设计工况动

叶转速为 420   r /min、出口流量为 0 .099  m 3 / s

下的水力扬程进行网格无关性验证，结果列于

表 2。根据表 2 结果，综合考虑计算精度和速度，

决定采用 431万网格进行 CFD数据集生成。 

2.2　代理模型训练

代理模型训练过程中，模型对各流道的预测

损失函数收敛情况如图 4 所示，纵轴为采用对数

坐标的损失值。

在图 4 中，训练集和测试集上的采样、方程损

失函数分别表现出几乎完全相同的下降模式，说

明模型拟合良好，能够将在训练数据中掌握的规

律很好地泛化到测试数据上，对训练集的学习并

未过度，也没有明显欠拟合；同时也说明测试数据

具有良好的代表性，分布规律和训练所用数据较

为接近，这种对数据集的划分是合理的。

开始训练时 ，采样损失函数迅速收敛至

10−2 以下，随后在训练集和测试集上均呈现稳步

下降的趋势，各流道处损失函数大小基本一致，且

由图 4 中趋势可以预见到在一定范围内随着训练

轮次的增加采样损失函数将进一步收敛，因此重

点考虑收敛过程更不稳定的方程损失函数。

方程损失函数的收敛速度相比采样损失函数

较慢，呈现波动式阶梯下降的趋势，其中导叶流道

对方程的求解最为精准，最大损失值小于 0.001；

而对于在入口和出口流道处的方程损失函数，在

25 轮之后，均降至 0.002 以下。对于方程形式最

为复杂且含训练数据相对较少的动叶区域，训练

过程中方程损失函数最小值为 0.004，在该区域

流速最快，湍流最为旺盛，对模型而言该区域的流

动规律最难感知，误差略大。继续迭代以得到更

精确的模型，4 个流道处代理模型最终表现列于

表 3。 

2.3　动叶区域流场还原验证

动叶区域的流动最为复杂，表 3 表明该区域

方程和采样损失均较高，若代理模型对该区域流

场还原良好，则能很好地预测主泵全流场。取

3 组不同的工况，将 CFD 的对应数据和通过代理

模型还原的动叶流场进行对比，如图 5 所示。图 5

 

表 2   网格无关性验证结果

Table 2    Result of grid independence validation

网格总数/万 水力扬程/m 相对误差1）/%

162 1.806

293 1.751 3.0

431 1.716 2.0

587 1.707 0.5

　　注：1） 相对此表中上一网格划分方案
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所示过程中，随着流体进入动叶区，经动叶旋转获

得机械能，在从动叶进口流向出口的过程中，流体

流速逐渐增大，模型较好地捕捉到了流体能量随

高度变化的物理规律。

在图 5a 工况下，出口流量较小，因此冷却剂

轴向流速较小，动叶的旋转导致流道内的流速增

大，因此流域内各点流速具有较大的周向分量，呈

现出绕泵轴旋转的运动模式。由于预处理采用了

最大-最小值归一化，相对误差受原始数据最小值

的影响且分布不均匀，故以二者余弦相似度评价

流场还原情况，该值越接近 1 说明代理模型给出

的预测与 CFD 模拟结果越相似。计算图 5a 中余

弦相似度为 0.974，并给出各点相对误差中位数

（9%）作为参考，从图 5a 中可直观看出误差主要来

源于 CFD计算中速度较大的位置。

在图 5b 工况下，出口流量显著提升，使轴向

流速大幅提升，因此流动状态也由周向沿着泵轴

旋转变为整体上沿轴向流动，受动叶旋转影响沿

着动叶旋转的方向产生一定的偏移。图 5b 中余

弦相似度为 0.963，相对误差为 13%，主要误差源

于动叶出口。尽管二者预测的流速方向大致相

同，模型输出的流速分布仍保留了随高度上升而

单调增加的特征，而数值模拟给出的计算结果中

在叶片出口处出现了在小区域内中心流速较大、

四周较小的情况。

在图 5c 工况下，整体流场和图 5b 工况相似，

只是区域流速整体上升。图 5c 中余弦相似度为

0.972，相对误差为 13%。动叶转速显著增加后，叶

片附近及出口处 CFD 模拟出的流速分布明显变

得更加杂乱，而代理模型给出的预测结果中流速

分布更为规整。

与 CFD 模拟结果相比，由于 PINN 代理模型

主要求解稳态控制方程 ，过程中仅同化部分

CFD 数据 ，而 CFD 模拟中采用的伪瞬态使得
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图 4    PINN代理模型于各流道的训练收敛曲线

Fig. 4    Convergence curve of PINN surrogate model at all flow channels

 

表 3   最终用于流场预测的代理模型损失情况

Table 3    Loss of surrogate model finally used for flow field prediction

流道 训练轮次 训练集采样损失 训练集方程损失 测试集采样损失 测试集方程损失

进口 44 0.005 2 0.002 0 0.005 3 0.002 5

动叶 72 0.006 4 0.003 9 0.006 4 0.003 6

导叶 41 0.005 1 0.000 9 0.005 1 0.001 1

出口 61 0.006 4 0.001 8 0.006 5 0.002 4
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CFD 所用控制方程经历了非稳态计算 ，导致

PINN 和 CFD 的模型求解目标略微存在差异，考

虑到这点，此代理模型能够在可被接受的误差范

围内用于代替 CFD模拟实现快速仿真。

此外，在本算例中流场细节预测上连续性更

为明显，杂乱区域较少，可能和以下两个原因有关。

一是数学形式上的差异。代理模型为适合对

连续函数进行拟合的神经网络，其表达形式本身

使得空间距离较近的两点输出值差异较小，而

CFD 模拟中通过将空间区域离散为网格，每个网

格上的物理量作为单独的小单元进行计算，在迭

代求解矩阵方程时每个网格存储的数据相比于神

经网络自身数学形式的约束更加独立，因此偶尔

会出现局部区域的异常值，如图 5b 的动叶上部的

流速分布突跃。

二是湍流模型的影响。在整个对比过程中，

发现模型输出和 CFD 输出的主要差异分布于流

速较大的位置上。铅铋作为高密度流体很容易出

现高雷诺数流动，而流速较大的位置雷诺数更大，

湍流更旺盛，速度场的杂乱程度确实会增加，在

图 5c 中数值模拟的结果就比模型输出更杂乱一

些。且在本文 CFD 模拟计算设置中采用伪瞬态

以应用雷诺时均应力方法，采用 SST k-ω 模型用

于对主泵内湍流的行为进行描述，最终输出的是

稳态流场的近似；而在模型训练过程中只引入了

稳态 N-S 方程用于构建方程损失函数，输出的是

经时间平均后的流场，这导致模型对湍流特征的

捕捉能力较弱。因此这个结果揭示了一个改进方

向：由于湍流可以看作涡的叠加，在方程损失函数

中引入稳态涡方程或许能够让模型在流场的细节

预测上表现得更好。

以上训练完成后的代理模型对一种工况下主

泵内流场的预测平均时间仅为 0.273 s，远快于 An-

sys Fluent 模拟所用时间（约为 70 min），加速比约

为 15 000，其中为训练模型消耗的收敛时间不超

过 200 min。对主泵全部流道进行任意工况下流

场预测的模型参数大小仅 286 kB，而 CFD 产生的

单一工况下的流场数据则高达 413 MB。相比于

传统 CFD 数值模拟方法，代理模型的时空复杂度

可忽略不计，符合 LFR 主泵数字孪生中对主泵内

物理状态即时进行追踪的要求。 

2.4　外特性求解验证

为了进一步验证模型在全运行区间内的运行

准确性，将模型预测的外特性与 CFD 模拟结果进

行比较，比较对象包括主泵扬程 Ht、效率 η 以及

动叶出口外缘处泵内最大流速，记作特征流速

v2。其中扬程的计算方式为：

Ht =
pt,o− pt,i

ρLBEg
+H0 （11）

式中：pt,o、pt,i 分别为出口和进口的平均总压，Pa；

H0 为泵高，本文取 0.96 m。

效率为：

η =
qVρLBEHtg

Mω
（12）
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a——动叶转速 378 r/min，出口流量 0.077 m3/s；
b——动叶转速 378 r/min，出口流量 0.209 m3/s；
c——动叶转速 504 r/min，出口流量 0.209 m3/s

图 5    动叶附近流域 CFD模拟结果和
代理模型还原结果对比

Fig. 5    Comparison of CFD simulation result and surrogate
model restoration result in near rotating blade
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式中，M 为动叶转矩，N∙m。

绘制 378、420、504 和 630 r/min 转速下的流

量-性能曲线，并将其和 CFD 模拟结果进行对比，

如图 6所示。
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图 6    CFD外特性计算和代理模型预测结果对比

Fig. 6    Comparison of CFD external feature calculation and surrogate model prediction result
 

由图 6 可见：整体而言模型和 CFD 数据给出

了相同的变化趋势；具体而言当转速较低时模型

和 CFD 模拟结果较为接近，在高转速下则误差相

对较大。扬程、效率和特征流速的模型预测结果

相较于 CFD模拟的平均相对误差如表 4所列。

 
 

表 4    模型预测结果相较于 CFD 模拟的平均相对误差

Table 4    Average relative error of model’s prediction result
compared with CFD simulation

转速/(r∙min−1)
相对误差/%

扬程 效率 特征流速

378 5.18 4.29 5.95

420（设计转速） 3.03 2.61 6.38

504 3.32 3.26 5.71

630 10.38 12.44 7.60

 
模型和 CFD 对外特性的求解结果整体相较

于对流速场和压强场求解的差距更小，设计转速

对应的 3 条外特性 -流量曲线相对误差不超过

10%，其中在设计工况（在转速为 420 r/min 的曲线

上取流量为 0.099 m3/s）处，扬程、效率和特征流速

的相对误差分别为 3.48%、1.44% 和 3.87%。全工

况区间最大相对误差为 12.44%，表明模型具备全

运行区间的准确性。 

3　结论与展望

本文成功开发了一种多输入 PINN 代理模型，

用于 LFR 主泵的流场预测，提供了一种快速、高

效的流场预测工具。本文得到的主要结论如下。

1） 该模型在识别流场细节方面表现出良好的

能力 ，与传统 CFD 方法的相对误差普遍低于

20%，在动叶区域等关键部位的流场还原验证中，

余弦相似度接近 1，相对误差中位数在 9%～

13%之间，能够准确捕捉泵内流场的物理规律。

2） 模型具备降低计算成本的能力。在时间成

本上，模型进行单工况预测时间仅为 0.273 s，相较

于 CFD 的约 70 min，预测速度提升了 15 000 倍，

极大缩短了设计和优化周期，满足了数字孪生系

统对即时状态追踪的要求 ，且训练时间仅与

2～3 个 CFD 计算时间相当，能够对给定范围内主

泵所有操作条件下的流场提供即时预测。而在空

间成本上，模型参数仅占 286 kB，远低于 CFD 数

据的 413 MB，显著降低了存储和计算资源需求。

3）  模型具有全工况区间外特性预测的准确

性。模型预测的主泵扬程、效率和特征流速与
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CFD 模拟整体变化趋势一致，在设计工况处的扬

程、效率和特征流速的相对误差分别为 3.48%、

1.44% 和 3.87%，可为 LFR 主泵的全面设计和性能

评估提供可靠支持。

尽管模型已展现出高效率和一定精度，但仍

存在改进空间。对于 PINN代理模型，采用瞬态控

制方程来设计损失函数就可以实现对主泵瞬态工

况实时追踪和预测，未来将开展模型对瞬态工况

和异常工况追踪预测能力的验证和优化完善工

作。此外，利用该模型为次级代理模型提供训练

集，有望实现求解过程的进一步提速。本文工作

为 LFR主泵的设计优化和性能提升提供更强大的

技术支撑，推动 LFR 技术向更高效、更精准的方

向发展。
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