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Abstract: The rapid development of China’s nuclear power industry, encompassing both domestic
innovation and international exports, has created an urgent need for localized nuclear power software
solutions. As essential components of such software, system analysis codes have seen significant
development efforts by Chinese research institutions, primarily based on two-fluid models similar to
those used in RELAP5 and TRACE. However, these codes require continuous validation and
improvement to meet evolving industry demands. Internationally, the adoption of three-field models

that explicitly account for droplet behavior (as exemplified by codes like SPACE and CATHARES3) has
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become a prevailing trend to enhance simulation accuracy, particularly for complex thermal-hydraulic
phenomena. Building on this global momentum, the NUSOL (Nuclear Safety and Operation Research
Laboratory) team at Xi’an Jiaotong University previously developed a three-field model-based system
analysis code. This study presents systematic optimizations to the code’s critical components, with
particular emphasis on reflooding scenarios where droplet dynamics significantly influence thermal-
hydraulic behavior. The optimization process began with sensitivity analysis-guided improvements to
phase transition criteria and heat transfer modeling. A key focus involved refining the transition criteria
between film boiling and transition boiling heat transfer modes, crucial for accurate prediction of heat
transfer coefficients and wall temperatures. Through analysis of UC-B reflooding experimental data
encompassing four distinct conditions of reflooding rates (2.44-12.67 cm/s) and temperature (23.3-
67.8 °C), the multiple minimum film boiling temperature models were evaluated. Comparative analysis
revealed that the Berenson model demonstrated superior accuracy in three-field simulations, and was
subsequently integrated into the code’s framework. Further optimization addressed the computational
errors observed under low reflooding rate conditions, where existing three-field implementations
showed particular deviations. By revising the film boiling heat transfer models for both liquid and vapor
phases at the wall interface, the code’s capability to capture subtle phase interaction mechanisms is
enhanced. The improvements were validated against FLECHT SEASET rod bundle reflooding
experimental data, enhancing the model’s accuracy in low reflooding rate conditions for key parameters
including quench front progression and peak cladding temperatures. The wall heat transfer and film
boiling determination criteria in the three-field model are successfully optimized, the improvements are
verified through reflooding experiments. The results demonstrate that the improved code accurately
simulates the thermal-hydraulic behavior of droplets during reflooding, significantly improving the
precision of system analysis codes. The improved code provides a more reliable tool for safety analysis
of advanced reactor design. These advancements play an advancing role in accelerating the localization
and innovation of China’s nuclear power system code.
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