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Study on Coupled Multi-behavior Analysis Method
for Graphite Dust Migration in Primary Loop of HTGR
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Abstract: In high-temperature gas-cooled reactors (HTGR), the motion of pebble flow within the core
induces friction between graphite materials, inevitably generating graphite dust. This dust is carried out
of the core by helium gas, circulates within the primary loop, and eventually deposits on primary circuit
surfaces. Since graphite dust can potentially retain activated radioactive products, the migration of such
radioactive dust poses a risk during reactor maintenance. Dust migration is governed by multiple
physical phenomena. However, previous studies have predominantly focused on individual behaviors,
which do not fully address practical engineering requirements. In this paper, the combined effects of
coagulation, deposition, and convection processes of dust within the primary loop were investigated.
Specifically, the discrete-sectional model was employed to accurately calculate the synergistic
interactions between Brownian coagulation and thermophoretic coagulation. Multiple mechanisms were

considered to evaluate deposition characteristics, and a system-level analysis based on the control
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volume model was conducted to establish a multi-behavior coupled analysis method for dust migration
in the primary loop. A validation of the coagulation calculation method presented in this study was
performed by utilizing the self-preserving distribution of aerosol Brownian coagulation in the closed
system proposed by Vemury. The influence of thermophoresis on the total coagulation rate under
different temperature gradients was analyzed. The dust convection analysis method in this study
exhibits a high degree of agreement with the analytical solution of dust convection, validating the
reliability of the proposed method. The multi-behavior coupling analysis method proposed in this study
was comprehensively validated using the STORM deposition experiment. The total dust deposition
obtained from the calculations is in good agreement with the experimental measurements. The method
is applied to simulate changes in particle size distribution within hot gas duct. The results indicate that
under full-power operation conditions of the HTR-10 helium duct, the obtained dust deposition rate
distribution is in good agreement with the analytical solutions from the literature, validating the
accuracy and engineering applicability of the proposed method in high-temperature gas-cooled reactor
systems. Additionally, the results show that coagulation has a relatively minor impact on dust deposition
within the inner tube of the helium duct.
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Fig. 1 Discrete-sectional model
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Fig. 9 Dust concentration distribution
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