ZHANG Zhong, WANG Zhan-shan, WU Yong-rong, CHEN Ling-yan. Optimized Design of Neutron Supermirror[J]. Atomic Energy Science and Technology, 2010, 44(1): 84-88. DOI: 10.7538/yzk.2010.44.01.0084
Citation: ZHANG Zhong, WANG Zhan-shan, WU Yong-rong, CHEN Ling-yan. Optimized Design of Neutron Supermirror[J]. Atomic Energy Science and Technology, 2010, 44(1): 84-88. DOI: 10.7538/yzk.2010.44.01.0084

Optimized Design of Neutron Supermirror

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • An important property of a supermirror is its critical angle, which is measured in multiples m of the critical angle of bulk nickel by convention. Adding Ni capping layer on the outmost of supermirrors, optimizing its key parameter ξ0 and introducing a novel parameter to design neutron supermirrors can offset the reflectivity limitation in m≤1 region. The designed Ni/Ti neutron supermirror has less bi-layer pairs (K=200) and large m value (m=3), which would be easier to fabricate. The effects of the surface and interfacial roughness on neutron supermirrors were discussed by using Nevot-Croce model to simulate the non-ideal interface of the supermirror. The calculation result shows that 1.5 nm interfacial roughness should be required to make m=3 neutron supermirror with 200 bi-layer pairs and more than 80% critical reflectivity.
  • [1]
    SCHOENBORN B P, CASPAR D L D, KAMMERER O F. A novel neutron monochromator[J]. Journal of Applied Crystallography, 1974(7): 508-510.
    [2]
    MEZEI F. Novel polarized neutron devices: Supermirror and spin component amplifier[J]. Communications on Physics, 1976(1): 81-85.
    [3]
    MEZEI F, DAGLEISH P A. Corrigendum and first experimental evidence on neutron supermirrors[J]. Communications on Physics, 1977(2): 41-43.
    [4]
    MAJKRZAK C F, ANKNER J F. Supermirror neutron guide coatings[J]. Proceeding of SPIE, 1992, 1738: 150-158.
    [5]
    KRIST T H, PAPPAS C, KELLER T H, et al. The polarizing beam splitter guide at BENSC[J]. Physical B, 1995, 213&214: 939-941.
    [6]
    BALLOT B, SAMUEL F, FARNOUX B. Supermirror neutron guide[J]. Proceeding of SPIE,1992, 1 738: 159-165.
    [7]
    MEZEI F, RUSSINA M. Neutron beam extraction and delivery at spallation neutron source[J]. Physical B, 2000, 283: 318-32.
    [8]
    HAYTER J B, MOOK H A. Discrete thinfilm multilayer design for X-ray and neutron supermirrors[J]. Journal of Applied Crystallography, 1989, 22: 35-41.
    [9]
    REHM C H, AGAMALIAN M. Flux gain for a next-generation neutron reflectometer resulting from improved supermirror performance[J]. Applied Physics A, 2002, 74: S1483-S1485.
    [10]
    Special feature section of neutron scattering lengths and cross sections of the elements and their isotopes [J/OL]. Neutron News, 1992, 3(3): 29-37[1999-12-23]. http://www.ncnr.nist.gov/resources/nlengths/list.html.
    [11]
    STEARNS D G. The scattering of X-ray from nonideal multilayer structures[J]. Journal of Applied Physics, 1989, 65(2): 491-506.
    [12]
    GUKASOV A G, RUBAN V A, BEDRIZOVA M N. Interference magnification of the region of specular’ reflection of neutrons by multilayer quasimosaic’ structures[J]. Soviet Technical Physics Letters, 1977, 3(2): 52-53.
    [13]
    SAXENA A M. Neutron focusing devices based on segmented thin-film-multilayers[J]. Nuclear Instruments and Metheds in Physics Research Section A, 2000, 454: 440-451.
    [14]
    SAXENA A M. Characteristics of thin-film multilayer monochromator systems from ray-tracing calculations[J]. Nuclear Instruments and Metheds in Physics Research Section A, 2000, 454: 426-439.

Catalog

    Article views (1019) PDF downloads (1295) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return