YANG Shi-yu, TU Jian-hui, FENG Hao, ZHANG Jin-hai, CUI Jing-zhong. Experimental Improvement Investigation on Microwave Power Frequency Shift in Rubidium Atomic Frequency Standards[J]. Atomic Energy Science and Technology, 2012, 46(6): 764-768. DOI: 10.7538/yzk.2012.46.06.0764
Citation: YANG Shi-yu, TU Jian-hui, FENG Hao, ZHANG Jin-hai, CUI Jing-zhong. Experimental Improvement Investigation on Microwave Power Frequency Shift in Rubidium Atomic Frequency Standards[J]. Atomic Energy Science and Technology, 2012, 46(6): 764-768. DOI: 10.7538/yzk.2012.46.06.0764

Experimental Improvement Investigation on Microwave Power Frequency Shift in Rubidium Atomic Frequency Standards

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Microwave power frequency shift is an important factor for the rubidium atomic frequency standards’ stability. The mechanism of microwave power frequency shift was studied. Experiments were developed to improve the equality of the C field, light field and microwave field for reducing the coefficient of microwave power frequency shift. The mechanism of microwave power frequency shift was validated and the major characteristic of microwave power frequency shift for rubidium atomic frequency standards was induced through the experiment of microwave power frequency shift. The results show that the coefficient of microwave power frequency shift is less than 3.5×10-12dB-1 without the attenuation of signal-to-noise.
  • [1]
    刘淑琴,董太乾. 铷原子频标老化的成因及消除[J]. 计量学报,1996,17(4):293-296.
    LIU Shuqin, DONG Taiqian. The cause and elimination of the aging in Rb atomic frequency standard[J]. Acta Metrologica Sinica, 1996, 17(4): 293-296(in Chinese).
    [2]
    初鑫钊,刘淑琴,董太乾. 铷原子频标中的微波功率频移[J]. 物理学报,1994,43(7):1 072-1 076.
    CHU Xinzhao, LIU Shuqin, DONG Taiqian. Microwave power frequency shift in the 87Rb atomic frequency standard[J]. Acta Physica Sinica, 1994, 43(7): 1 072-1 076(in Chinese).
    [3]
    刘淑琴,董太乾, 初鑫钊,等. 铷原子频标中微波功率频移的实验研究[J]. 计量学报,1996,17(1):67-69.
    LIU Shuqin, DONG Taiqian, CHU Xinzhao, et al. Experimental study on microwave power frequency shift in Rb atomic frequency standard[J]. Acta Metrologica Sinica, 1996, 17(1): 6769(in Chinese).
    [4]
    VANIER J, AUDOIN C. The quantum physics of atomic frequency standards[M]. Bristol, England: Adam Hilger, 1989.
    [5]
    邢爱堂,陈慧凯,董太乾,等. 光抽运汽室87Rb频标中的微波功率频移[J]. 山东工业大学学报,2000,39(5):181-184.
    XING Aitang, CHEN Huikai, DONG Taiqian, et al. Microwave power frequency shift in optically pumped 87Rb cell frequency standard[J]. Joural of Shandong University of Technology, 2000, 39(5): 181-184(in Chinese).
    [6]
    RILEY W. The physics of the environmental sensitivity of rubidium gas cell frequency standards[J]. IEEE Transaction on Ultrasonic, Ferroelectrics and Frequency, 1992, 39(2): 234-238.
    [7]
    王艳,余钫,朱熙文,等. 汽室型铷原子频标中微波腔的小型化[J]. 宇航计测技术,2007,27(5):41-46.
    WANG Yan, YU Fang, ZHU Xiwen, et al. A downsized microwave cavity for the rubidium vapor cell frequency standard[J]. Journal of Astronautic Metrology and Measurement, 2007, 27(5): 41-46(in Chinese).
    [8]
    夏白桦,钟达,朱熙文,等. 一种小型化铆原子频标腔泡系统及其频移特性[J]. 计量学报,2005,26(2):163-167.
    XIA Baihua, ZHONG Da, ZHU Xiwen, et al. A miniature cavity-cell assembly for rubidium atomic frequency[J]. Acta Metrologica Sinica, 2005, 26(2): 163-167(in Chinese).
    [9]
    冯浩,崔敬忠,翟浩,等. 滤光对铷原子频标稳定性影响的研究[J]. 真空与低温,2007,13(3):17-19.
    FENG Hao, CUI Jingzhong, ZHAI Hao, et al. Study on the influence of optical filter in frequency stability of rubidium atomic frequency standard[J]. Vacuum & Cryogenics, 2007, 13(3): 17-19(in Chinese).
    [10]
    BLOCH M, MANCINI O, McCLEL L T. Performance of rubidium and quartz clocks in space[C] ∥2002 IEEE International Frequency Control Symposium and PDA Exhibition. [S. l.] : [s. n.], 2002.
    [11]
    SHIRLEY L W D, LOWE J H. The accuracy evaluation of NIST-7[J]. IEEE Trans IM, 1995, 11(1): 120-123.
    [12]
    LOGACHEV V A, PASHEV G P. Estimation of linear frequency drift coefficient of frequency standards[C] ∥1996 IEEE International Frequency Control Symposium. [S. l.] : [s. n.], 1996.
    [13]
    王玉泰,聂士忠,王玉茹. 铷原子频标长期稳定度的研究[J]. 山东建材学院学报,1999, 13(2):117-119.
    WANG Yutai, NIE Shizhong, WANG Yuru. Study on long term stability of rubidium atom frenquency standard[J]. Journal of Shandong Institute of Building Materials, 1999, 13(2): 117-119(in Chinese).
  • Related Articles

    [1]YUE Hongwei, LI Zhongping, ZHOU Youwei, CAO Shuchun, REN Jieru, ZHANG Zimin, ZHAO Yongtao. Research on Control Method of Electron Accelerator Based on Simulink Simulation[J]. Atomic Energy Science and Technology, 2025, 59(1): 197-204. DOI: 10.7538/yzk.2024.youxian.0195
    [2]JIA Yuwen, DUAN Xiao, ZHANG Houming, DUAN Tianying, XU Qiguo, MAO Huan. Design Optimization Method of Mamdani Type Fuzzy Controller Applied to Research Reactor[J]. Atomic Energy Science and Technology, 2021, 55(6): 1091-1097. DOI: 10.7538/yzk.2021.youxian.0244
    [3]ZHANG Wei-ying, DUAN Tian-ying, LIU Yong, ZHANG Hou-ming, XIAO Zhi. Analysis of Load-following Capacity of CEFR[J]. Atomic Energy Science and Technology, 2017, 51(11): 2028-2035. DOI: 10.7538/yzk.2017.51.11.2028
    [4]JIA Yu-wen, DUAN Tian-ying, XU Qi-guo. Study on Application of Fuzzy Control to Research Reactor Power Regulation System[J]. Atomic Energy Science and Technology, 2017, 51(3): 474-479. DOI: 10.7538/yzk.2017.51.03.0474
    [5]JIA Yu-wen, MAO Huan, YIN Hao-zhe, TANG Guo-jing, CHEN Li. Simulation Analysis of Digital Power Regulation System of Multipurpose Heavy Water Research Reactor[J]. Atomic Energy Science and Technology, 2014, 48(12): 2333-2339. DOI: 10.7538/yzk.2014.48.12.2333
    [6]ZHANG Hou-ming, YAO Yuan, DUAN Tian-ying, LI Mao-lin, XIONG Wen-bin, GAO Qiang. Research on SFR Intermediate Loop Modeling, Simulation and Flow Control[J]. Atomic Energy Science and Technology, 2013, 47(12): 2283-2287. DOI: 10.7538/yzk.2013.47.12.2283
    [7]CHEN Zhi-yun, LUO Lei, CHEN Wen-zhen, GUI Xue-wen. Design of Simulink Module for Dynamic Reactivity Simulation of Marine Reactor Automatic Control Rod[J]. Atomic Energy Science and Technology, 2010, 44(增刊): 317-320. DOI: 10.7538/yzk.2010.44.suppl.0317
    [8]WANG Qiao, LI Hao-feng, CHEN Wen-zhen, ZHANG Fan. Dynamic Simulation of Response to Step Reactivity Insertedin Reactor With Temperature and Poison Feedback Based on Simulink[J]. Atomic Energy Science and Technology, 2009, 43(9): 1-827. DOI: 10.7538/yzk.2009.43.09.0823
    [9]CHEN Zhi-yun, CHEN Wen-zhen, LUO Lei, ZHU Qian. Application of Simulink in Fast Calculation for Marine Reactor Parameters[J]. Atomic Energy Science and Technology, 2008, 42(z1): 182-185. DOI: 10.7538/yzk.2008.42.z1.0182
    [10]DING Shu-Ling, LI Fu, LI Si-Feng, CHU Xin-Yuan. Real-time Numerical Simulation With High Efficiency for an Experimental Reactor System[J]. Atomic Energy Science and Technology, 2006, 40(4): 424-428. DOI: 10.7538/yzk.2006.40.04.0424

Catalog

    Article views (594) PDF downloads (922) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return