CHEN Ke, BAO Zhi-hao, ZHU Xiu-rong, DU Ai, SHEN Jun, WU Guang-ming, ZHANG Zhi-hua, ZHOU Bin. Synthesis and Characterization of Silicon Carbide Aerogels via Template-Confined Magnesiothermic Reaction[J]. Atomic Energy Science and Technology, 2012, 46(7): 855-860. DOI: 10.7538/yzk.2012.46.07.0855
Citation: CHEN Ke, BAO Zhi-hao, ZHU Xiu-rong, DU Ai, SHEN Jun, WU Guang-ming, ZHANG Zhi-hua, ZHOU Bin. Synthesis and Characterization of Silicon Carbide Aerogels via Template-Confined Magnesiothermic Reaction[J]. Atomic Energy Science and Technology, 2012, 46(7): 855-860. DOI: 10.7538/yzk.2012.46.07.0855

Synthesis and Characterization of Silicon Carbide Aerogels via Template-Confined Magnesiothermic Reaction

More Information
  • Time-efficient synthesis of resorcinol-formaldehyde/silica composite (RF/SiO2) aerogels was carried out by using acids as catalysts. RF/SiO2 aerogels were pyrolyzed to C/SiO2 aerogels at high temperature. SiC aerogels were successfully converted from C/SiO2 aerogels by a template-confined magnesiothermic reaction at low temperature (700 ℃). The samples were characterized by XRD, SEM, Raman, FTIR and BET. The results suggest that the products consist of nanocrystalline silicon carbide, and maintain 3D porous network as similar as that of original templates. They possess a bulk density of 130 mg/cm3 and a specific surface area of 230 m2/g. Potentially, the proposed method could be expanded to convert other carbon/metal or semimetal oxide aerogels to carbide aerogels, which could be benefit for investigation of ICF experimental targets.
  • [1]
    周斌,沈军,吴广明,等. 气凝胶的制备及其在惯性约束聚变实验中的应用[J]. 原子能科学技术,2004,38(增刊):125-128. ZHOU Bin, SHEN Jun, WU Guangming, et al. Preparation of aerogels and application in inertial confinement fusion experiments[J]. Atomic Energy Science and Technology, 2004, 38(Suppl.): 125-128(in Chinese).
    [2]
    杜艾,周斌,沈军,等. 块体气凝胶的通用制备方法进展[J]. 原子能科学技术,2010,44(8):1 006-1 013. DU Ai, ZHOU Bin, SHEN Jun, et al. Progress on universal methods to prepare monolithic aerogels[J]. Atomic Energy Science and Technology, 2010, 44(8): 1006-1013(in Chinese).
    [3]
    徐翔,周斌,杜艾,等. 微尺寸碳气凝胶的制备及其机械性能研究[J]. 原子能科学技术,2008,42(增刊):26-30. XU Xiang, ZHOU Bin, DU Ai, et al. Investigation for micro-shape fabrication of carbon aerogel and its mechanical property[J]. Atomic Energy Science and Technology, 2008, 42(Suppl.): 26-30(in Chinese).
    [4]
    袁磊,王朝阳,付志兵,等. MnO2/碳气凝胶粉末复合电极材料制备与性能研究[J]. 原子能科学技术,2010,44(7):864-868. YUAN Lei, WANG Chaoyang, FU Zhibing, et al. Preparation and study on performance of MnO2/C composite electrode materials[J]. Atomic Energy Science and Technology, 2010, 44(7): 864-868(in Chinese).
    [5]
    肖淑芳,周斌,万慧军,等. 无机分散溶胶-凝胶法制备块状锂基气凝胶[J]. 原子能科学技术,2008,42(增刊):21-25. XIAO Shufang, ZHOU Bin, WAN Huijun, et al. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method[J]. Atomic Energy Science and Technology, 2008, 42(Suppl.): 21-25(in Chinese).
    [6]
    MOHANAN J L, ARACHCHIGE I U, BROCK S L. Porous semiconductor chalcogenide aerogels[J]. Science, 2005, 307(5708): 397.
    [7]
    BRYNING M B, MILKIE D E, ISLAM M F, et al. Carbon nanotube aerogels[J]. Advanced Materials, 2007, 19(5): 661-664.
    [8]
    BIGALL N C, HERRMANN A K, VOGEL M, et al. Hydrogels and aerogels from noble metal nanoparticles[J]. Angewandte Chemie International Edition, 2009, 48(51): 9 731-9 734.
    [9]
    WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of American Chemical Society, 2010, 132(40): 14067-14069.
    [10]
    唐永建,张林,吴卫东,等. ICF靶材料和靶制备技术研究进展[J]. 强激光与粒子束,2008,20(11):1 827-1 840. TANG Yongjian, ZHANG Lin, WU Weidong, et al. Research progress on ICF target materials and target fabrication technology[J]. High Power Laser and Particle Beams, 2008, 20(11): 1827-1840(in Chinese).
    [11]
    WILLANDER M, FRIESEL M, WAHAB Q, et al. Silicon carbide and diamond for high temperature device applications[J]. Journal of Materials Science: Materials in Electronics, 2006, 17(1): 1-25.
    [12]
    LI X, CHEN X, SONG H. Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol-formaldehyde/SiO2 hybrid aerogels[J]. Journal of Materials Science, 2009, 44(17): 4661-4667.
    [13]
    LI X K, LIU L, ZHANG Y X, et al. Synthesis of nanometer silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon, 2001, 39(2): 159-165.
    [14]
    BAO Z, WEATHERSPOON M R, SHIAN S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446: 172-175.
    [15]
    IBISATE M, GOLMAYO D, LOPEZ C. Silicon direct opals[J]. Advanced Materials, 2009, 21(28): 2 899-2 902.
    [16]
    XI G, LIU Y, LIU X, et al. Mgcatalyzed autoclave synthesis of aligned silicon carbide nanostructures[J]. Journal of Physical Chemistry B, 2006, 110(29): 14172-14178.
    [17]
    CAI Y, ALLAN S M, SANDHAGE K H. Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells[J]. Journal of American Ceramic Society, 2005, 88(7): 2005-2010.

Catalog

    Article views (649) PDF downloads (1173) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return