Citation: | CONG Teng-long, TIAN Wen-xi, QIU Sui-zheng, SU Guang-hui. Secondary Side Flow Field of Steam Generator With Coupled Heat Transfer From Primary to Secondary Side Fluid[J]. Atomic Energy Science and Technology, 2014, 48(8): 1398-1405. DOI: 10.7538/yzk.2014.48.08.1398 |
[1] |
FERNG Y M. Investigating the distribution characteristics of boiling flow and released nuclide in the steam generator secondary side using CFD methodology[J]. Ann Nucl Energy, 2007, 34(9): 724-731.
|
[2] |
FERNG Y M, CHANG H J. CFD investigating the impacts of changing operating conditions on the thermal-hydraulic characteristics in a steam generator[J]. Appl Therm Eng, 2008, 28(5): 414-422.
|
[3] |
FERNG Y M, YINPANG M, KANG J C. Thermal-hydraulic simulation of localized flow characteristics in a steam generator[J]. Nucl Technol, 2001, 136(2): 186-196.
|
[4] |
KEETON L, SINGHAL A, SRIKANTIAH G. ATHOS3: A computer program for thermal-hydraulic analysis of steam generators[M]. Palo Alto, CA, US: Electric Power Research Institute, 1986.
|
[5] |
LELLOUCHE G, ZOLOTAR B. A mechanistic model for predicting two-phase void for water in vertical tubes, channels and rod bundles, EPRI-N-2246[R]. Palo Alto, CA, US: Electric Power Research Institute, 1982.
|
[6] |
MacADAMS W H. Heat transmission[M]. New York, US: McGraw Hill, 1954.
|
[7] |
GRIMISON E. Correlation and utilization of new data on flow resistance and heat transfer for cross flow of gases over tube banks[J]. Trans ASME, 1937, 59(7): 583-594.
|
[8] |
DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. Int Commun Heat Mass Transfer, 1985, 12(1): 3-22.
|
[9] |
DINGEE D A, BELL W, CHASTAIN J, et al. Heat transfer from parallel rods in axial flow[R]. Columbus, Ohio: Battelle Memorial Inst., 1955.
|
[10] |
DINGEE D A, CHASTAIN J W. Heat transfer from parallel rods in an axial flow[C]∥ASME Reactor Heat Transfer Conference. Oak Ridge: US Atomic Energy Commission, 1968.
|
[11] |
DWYER O, SHEEHAN T, WEISMAN J, et al. Cross flow of water through a tube bank at reynolds numbers up to a million[J]. Industrial & Engineering Chemistry, 1956, 48(10): 1836-1846.
|
[12] |
陶文铨. 数值传热学[M]. 第2版. 西安:西安交通大学出版社,2001.
|
[13] |
ANTOHE B, LAGE J. A general two-equation macroscopic turbulence model for incompressible flow in porous media[J]. Int J Heat Mass Transfer, 1997, 40(13): 3013-3024.
|
[14] |
CHANDESRIS M, SERRE G, SAGAUT P. A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows[J]. Int J Heat Mass Transfer, 2006, 49(15): 2739-2750.
|
[15] |
De LEMOS M J S. Turbulence in porous media: Modeling and applications[M]. London: Elsevier, 2012.
|
[16] |
LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972.
|
[17] |
SCHLICHTING H. Boundary-layer theory[M]. 7th ed. Germany: Springer, 1979.
|
[18] |
HOPKINS G. Verification of the ATHOS3 code against feedring and preheat steam generator test data[M]. Palo Alto, CA, US: Electric Power Research Institute, 1988.
|
[19] |
林诚格,郁祖盛,欧阳予. 非能动安全先进核电厂AP1000[M]. 北京:原子能出版社,2008.
|
[20] |
AXISA F, ANTUNES J, VILLARD B. Overview of numerical methods for predicting flow-induced vibration[J]. J Pressure Vessel Technol, 1988, 110(1): 6-14.
|