ZHANG Su-ya-la-tu, CHEN Zhi-qiang, LIU Jian-li, SHI Fu-dong, HAN Rui, LIU Xing-quan, JIN Zeng-xue, LIN Wei-ping, REN Pei-pei, JIA Bao-lu. Development and the First Test Experiment of Experimental Setup for Measuring of ADS Nuclear Data[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 1-5. DOI: 10.7538/yzk.2014.48.S0.0001
Citation: ZHANG Su-ya-la-tu, CHEN Zhi-qiang, LIU Jian-li, SHI Fu-dong, HAN Rui, LIU Xing-quan, JIN Zeng-xue, LIN Wei-ping, REN Pei-pei, JIA Bao-lu. Development and the First Test Experiment of Experimental Setup for Measuring of ADS Nuclear Data[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 1-5. DOI: 10.7538/yzk.2014.48.S0.0001

Development and the First Test Experiment of Experimental Setup for Measuring of ADS Nuclear Data

More Information
  • The development and the first test experiment of experimental setup for measuring of the ADS nuclear data, which was based on Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) were introduced. The detection system of this experimental setup was mainly composed of beam pick-up detector, gamma detector array, light charged particle spectrometer, and neutron time of flight spectrometer. The first beam test experiment for the whole system of the experimental setup including detection system and data acquisition system was done by using the measurement of emission neutron, gamma and charged particle identification, energy spectrum, yield and angular distribution for 400 MeV/u 16O bombardment on Pb target. At present, the experimental measurement of accelerator driven white neutron energy spectrum in the range of several MeV to hundreds of MeV was done for the first time in China. The experimental results show that the experimental apparatus works well, and the experimental technique is reliable and correct.
  • [1]
    SLOWINSKI B. Spallation reactions and accelerator-driven systems[J]. Applied Energy, 2003, 75: 129-136.
    [2]
    丁大钊,傅世年. 加速器驱动放射性洁净核能系统[J]. 现代物理知识,2001,13:20-25.DING Dazhao, FU Shinian. Accelerator-driven radioactive clean nuclear energy system[J]. Modern Physics, 2001, 13: 20-25(in Chinese).
    [3]
    YUJIRO I. Nuclear data relevant to accelerator driven system[J]. Journal of Nuclear Science and Technology, 2002, 2: 13-18.
    [4]
    MEIER M M, CLARK D A, GOULDING C A, et al. Differential neutron production cross sections and neutron yields from stopping-length targets for 113 MeV protons[J]. Nuclear Science and Engineering, 1989, 102: 310-321.
    [5]
    MEIERM M, AMIAN W B, GOULDING C A, et al. Differential neutron production cross sections for 256 MeV protons[J]. Nuclear Science and Engineering, 1992, 110: 289-298.
    [6]
    AMIAN W B, BYRD R C, GOULDING C A, et al. Differential neutron production cross sections for 800 MeV protons[J]. Nuclear Science and Engineering, 1992, 112: 78-86.
    [7]
    STAMER S, SCOBEL W, AMIAN W B, et al. Double differential cross sections for neutron emission induced by 256 MeV and 800 MeV protons[J]. Physics Review C, 1993, 47: 1647-1658.
    [8]
    NAKAMOTO T, ISHIBASHI K, MATSUFUJI N, et al. Spallation neutron measurement by the time-of-flight method with a short flight path[J]. Journal of Nuclear Science and Technology, 1995, 32: 827-833.
    [9]
    ISHIBASHI K, TAKADA H, NAKAMOTO T, et al. Measurement of neutron-production double-differential cross sections for nuclear spallation reaction induced by 0.8, 1.5 and 3.0 GeV protons[J]. Journal of Nuclear Science and Technology, 1997, 34: 529-537.
    [10]
    MEIGO S, TAKADA H, CHIBA S, et al. Measurements of neutron spectra produced from a thick lead target bombarded with 0.5 and 1.5 GeV protons[J]. Nuclear Instruments and Methods in Physics Research A, 1999, 431: 521-530.
    [11]
    DAIKI S, NOBUHIRO S, KENJI I, et al. Neutron-production double-differential cross sections of Iron and lead by 0.8 and 1.5 GeV protons in the most-forward direction[J]. Journal of Nuclear Science and Technology, 2003, 40: 283-290.
    [12]
    LEDOUX X, BORNE F, BOUDARD A, et al. Spallation neutron production by 0.8, 1.2, and 1.6 GeV protons on Pb targets[J]. Physical Review Letters, 1999, 82: 4412-4415.
    [13]
    TREBUKHOVSKY Y V, TITARENKO Y E, BATYAEV V F, et al. Double-differential cross sections for the production of neutrons from Pb, W, Zr, Cu, and Al targets irradiated with 0.8, 1.0, and 1.6 GeV protons[J]. Physics of Atomic Nuclei, 2005, 68(1): 3-15.
    [14]
    XIA J W, ZHAN W L, WEN B W, et al. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou[J]. Nuclear Instruments and Methods in Physics Research A, 2002, 488(1-2): 11-25.
    [15]
    ZHAN W L, XU H S, XIAO G Q, et al. Progress in HIRFL-CSR[J]. Nuclear Physics A, 2010, 834: 694c-700c.
    [16]
    WADE D P. The VME bus handbook: A user’s guide to the VME64 and VME64x bus specifications[M]. USA: VMEbus International Trade Association, 1997.
  • Cited by

    Periodical cited type(8)

    1. 涂细凯,王一举,陆浩,李肖. 下肢外骨骼步态自适应助力控制研究. 机械设计与制造. 2025(01): 302-306+312 .
    2. 邵志元. 振动干扰下大负载DJ型架桥机机臂升降液压稳态控制. 机械制造与自动化. 2025(01): 251-255 .
    3. 李科莹. 基于PSO优化的模糊控制器在选择性催化还原脱硝技术中的应用. 自动化应用. 2024(07): 97-99+108 .
    4. 付晓,徐锐良,闫祥海,徐立友. 力位综合系数调节方法研究. 中国农机化学报. 2024(06): 37-41 .
    5. 高靖茹,高燃,刘硕林,李哲轩,江家辉,杜佳岭. 基于模糊控制算法的软体机器人系统. 现代信息科技. 2024(20): 111-116 .
    6. 郑显润,胡睿,梁刚刚,孙亚飞. 旋转调制惯导系统转位机构的高精度控制研究. 弹箭与制导学报. 2024(05): 47-53 .
    7. 王凯,朱慧珍,王丽君. 深度学习理论下移动机器人全局路径规划方法. 计算机仿真. 2023(10): 431-434+439 .
    8. 侯军凯,聂建军,牛继高,席建普,闫修鹏. 基于微控制器的模糊控制算法实现. 中原工学院学报. 2021(05): 57-62 .

    Other cited types(11)

Catalog

    Article views (257) PDF downloads (20146) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return