ZHU Chen, KUANG Bo, SUN Wei, FAN Yun-liang, ZHANG Zhi, TANG Chao-li. Influence of Nanofluids on Boiling Heat Transfer Characteristics of Inclined Downward-facing Heating Surface[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 268-272. DOI: 10.7538/yzk.2014.48.S0.0268
Citation: ZHU Chen, KUANG Bo, SUN Wei, FAN Yun-liang, ZHANG Zhi, TANG Chao-li. Influence of Nanofluids on Boiling Heat Transfer Characteristics of Inclined Downward-facing Heating Surface[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 268-272. DOI: 10.7538/yzk.2014.48.S0.0268

Influence of Nanofluids on Boiling Heat Transfer Characteristics of Inclined Downward-facing Heating Surface

More Information
  • This paper aims to investigate how nanometer materials improve boiling heat transfer characteristics through a pool boiling experiment from a downward-facing surface at atmosphere pressure. Under inclined angle 0°, 15° and 30°, several pool boiling experiments were conducted in deionized water and different nanofluids. Visualization of boiling phenomena and bubble movement were recorded by utilizing a high-speed digital camera. Compared with deionized water, boiling heat transfer coefficient increases by 23.1% for Al2O3 nanofluids, 42.5% for Cu-20 nanofluids and 92.9% for Cu-100 nanofluids. It is found that boiling heat transfer coefficient increases with the volume concentration for Cu-20 nanofluids.
  • [1]
    BANG I C, BUONGIORNO J, HU L W, et al. Measurement of key pool boiling parameters in nanofluids for nuclear applications[J]. Journal of Power and Energy Systems, 2008, 2: 340-351.
    [2]
    CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. US: Argonne National Laboratory, 1995.
    [3]
    刘辉,李茂德. 纳米流体传热强化技术[J]. 应用能源技术,2007(10):32-36.LI Hui, LI Maode. The heat transfer enhancement techniques of nanofluids[J]. Applied Energy Technology, 2007(10): 32-36(in Chinese).
    [4]
    林璟,方利国. 纳米流体强化传热技术及其应用新进展[J]. 化工进展,2008,27(4):488-494.LIN Jing, FANG Liguo. Recent progress of technology and application of heat transfer enhancement of nanofuilds[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488-494(in Chinese).
    [5]
    宣益民,李强. 纳米流体强化传热研究[J]. 工程热物理学报,2000,21(4):466-470.XUAN Yimin, LI Qiang. Heat transfer enhancement of nanofluids[J]. Journal of Engineering Thermophysics, 2000, 21(4): 466-470(in Chinese).
    [6]
    李艳娇,赵凯,罗志峰,等. 纳米流体的研究进展[J]. 材料导报,2008(11):87-91.LI Yanjiao, ZHAO Kai, LUO Zhifeng, et al. A review on research development of nanofluids[J]. Materials Review, 2008(11): 87-91(in Chinese).
    [7]
    BUONGIORNO J, HU L W, APOSTOLAKIS G, et al. A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors[J]. Nuclear Engineering and Design, 2009, 239(5): 941-948.
    [8]
    唐潇,刁彦华,赵耀华,等. δ Al2O3 R141b纳米流体的池内核态沸腾传热特性[J]. 化工学报,2012,63(1):64-70.TANG Xiao, DIAO Yanhua, ZHAO Yaohua, et al. Nucleate pool boiling heat transfer of δ Al2O3 R141b nanofluid on horizontal plate[J]. CIESC Journal, 2012, 63(1): 64-70(in Chinese).
  • Related Articles

    [1]WANG Xuejian, YUAN Chaofei, ZHAO Yanan, YU Tao. Experimental Study on Pool Boiling Heat Transfer Characteristics of Graphite Oxide Nano Coating on Copper Surface[J]. Atomic Energy Science and Technology, 2024, 58(5): 1033-1039. DOI: 10.7538/yzk.2023.youxian.0471
    [2]XIONG Ping, SUN Yuanyang, LUO Yan, YUAN Peng, DU Peng, DENG Jian, LU Tao. Effect of Surface Characteristics of Zr-4 and Subcooling Degree of Coolant on Heat Transfer of Quenching Boiling[J]. Atomic Energy Science and Technology, 2024, 58(4): 783-789. DOI: 10.7538/yzk.2023.youxian.0528
    [3]ZHONG Dawen, LIAN Xuexin, SHI Haopeng, HAN Yucheng. Effect of Aging Effect on Boiling Heat Transfer Performance of Coating Surface[J]. Atomic Energy Science and Technology, 2024, 58(1): 93-102. DOI: 10.7538/yzk.2023.youxian.0257
    [4]SHI Haopeng, LIAO Weicheng, ZHONG Dawen, MENG Ji’an, ZHAO Jinpeng, LUO Xiaotao. Steady-state Experimental Study of Critical Boiling Heat Transfer on Downward Facing Surface with Pin-fin Coating Structure[J]. Atomic Energy Science and Technology, 2020, 54(12): 2337-2343. DOI: 10.7538/yzk.2019.youxian.0910
    [5]YUAN Hongsheng, TAN Sichao, LI Zhongchun, HUANG Tao, WANG Xiaoyu, WU Xiaoli, GAO Yingxian. Subcooled Flow Boiling Heat Transfer under Low Pressure and Low Flow Velocity[J]. Atomic Energy Science and Technology, 2018, 52(11): 1949-1955. DOI: 10.7538/yzk.2018.youxian.0209
    [6]BI Jing-liang, HUANG Yan-ping, XU Jian-jun, KE Dao-you. Study of Nanofluid Saturated Pool Boiling Heat Transfer and CHF Model[J]. Atomic Energy Science and Technology, 2017, 51(6): 1008-1015. DOI: 10.7538/yzk.2017.51.06.1008
    [7]WANG Yun, WU Jun-mei. Simulation on Bubble Departure Behavior of Al2O3/H2O Nanofluid on Lower Head Outer Surface[J]. Atomic Energy Science and Technology, 2016, 50(1): 73-79. DOI: 10.7538/yzk.2016.50.01.0073
    [8]LI Ya, CAO Xia-xin, WANG Kai-yuan, SUN Zhong-ning. Validation of RELAP5/MOD3.2 Code for Simulating Pool Boiling Heat Transfer Outside Vertical Tube Bundle[J]. Atomic Energy Science and Technology, 2014, 48(12): 2269-2273. DOI: 10.7538/yzk.2014.48.12.2269
    [9]CHEN Chong, GAO Pu-zhen, WANG Chang. Experimental Research of Flow Boiling Heat Transfer Characteristics in Narrow Channel[J]. Atomic Energy Science and Technology, 2014, 48(3): 435-440. DOI: 10.7538/yzk.2014.48.03.0435
    [10]LI Yong, YAN Chang-qi, LIU Jia. Experimental Study on Enhanced Boiling Heat Transfer[J]. Atomic Energy Science and Technology, 2009, 43(增刊2): 248-251. DOI: 10.7538/yzk.2009.43.suppl2.0248

Catalog

    Article views (151) PDF downloads (1239) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return