Citation: | QIU Yi-shu, YU Jian-kai, LIANG Jin-gang, WANG Kan. keff Sensitivity Analysis to Nuclear Data with RMC Code[J]. Atomic Energy Science and Technology, 2015, 49(10): 1821-1827. DOI: 10.7538/yzk.2015.49.10.1821 |
[1] |
ZWERMANN W, GALLNER L, KLEIN M, et al. XSUSA solution for the PWR Pincell burnup benchmark[C]∥Proceedings of the 6th Workshop on OECD Benchmark for Uncertainty Analysis in Best-Estimate Modeling for Design, Operation and Safety Analysis of LWRs (UAM-6). Karlsruhe, Germany: [s. n.], 2012.
|
[2] |
SCALE: A comprehensive modeling and simulation suite for nuclear safety analysis and design, Version 6.1, ORNL/TM2005/39[R]. USA: Oak Ridge National Laboratory, 2011.
|
[3] |
KIEDROWSKI B C, BROWN F B. Comparison of the Monte Carlo adjoint-weighted and differential operator perturbation methods[R]. USA: Los Alamos National Laboratory, 2010.
|
[4] |
NAUCHI Y, KAMEYAMA T. Development of calculation technique for iterated fission probability and reactor kinetic parameters using continuous-energy Monte Carlo method[J]. J Nucl Sci Technol, 2010, 47(11): 977-990.
|
[5] |
REARDEN B T, PERFETTI C M, WILLIAMS M L, et al. SCALE sensitivity calculations using contributon theory[C]∥ Proceedings of Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA+MC2010). Tokyo, Japan: [s. n.], 2010.
|
[6] |
PERFETTI C M, REARDEN B T. Development of a SCALE tool for continuous-energy eigenvalue sensitivity coefficient calculations[C]∥Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA+MC 2013). Paris, France: [s. n.], 2013.
|
[7] |
PERFETTI C M. Advanced Monte Carlo methods for continuous-energy eigenvalue sensitivity coefficient calculation[D]. USA: University of Michigan, 2012.
|
[8] |
KIEDROWSKI B C, BROWN F B, WILSON P P H. Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo[J]. Nuclear Science and Engineering, 2011, 168(3): 226-241.
|
[9] |
KIEDROWSKI B C, BROWN F B. Adjoint-based k-eigenvalue sensitivity coefficients to nuclear data using continuous-energy Monte Carlo[J]. Nuclear Science and Engineering, 2012, 174: 227-244.
|
[10] |
SHIM H J, KIM C H. Adjoint sensitivity and uncertainty analyses in Monte Carlo forward calculations[J]. Journal of Nuclear Science and Technology, 2011, 5: 1453-1461.
|
[11] |
KIEDROWSKI B C. MCNP6.1 k-eigenvalue sensitivity capability: A users guide, LA-UR-13-22251[R]. USA: LANL, 2013.
|
[12] |
SHIM H J, HAN B S, JUNG J S, et al. MCCARD: Monte Carlo code for advanced reactor design and analysis[J]. Nuclear Engineering and Technology, 2012, 44(2): 161-176.
|
[13] |
REARDEN B T. Perturbation theory eigenvalue sensitivity analysis with Monte Carlo techniques[J]. Nucl Sci Eng, 2004, 146: 367-382.
|
[14] |
HURWITZ H. Physical interpretation of the adjoint flux: iterated fission probability[M]∥Naval reactor physics handbook, Vol. Ⅰ. RADKOWSKY A. USA: Atomic Energy Commission, 1964: 864-869.
|
[15] |
WANG Kan, LI Zeguang, SHE Ding, et al. RMC: A Monte Carlo code for reactor core analysis[C]∥Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA+MC 2013). Paris, France: [s. n.], 2013.
|
[16] |
DALLE H M. Monte Carlo burnup simulation of the Takahama-3 benchmark experiment[C]∥2009 International Nuclear Atlantic Conference: INAC 2009. Brazil: [s. n.], 2009.
|