LI Zhuo-cheng, ZHU Zhi-chao, SONG Ying-ming, FAN Gong-tao, WANG Xiao-dong, WANG Xing-liu, LUO Wen. Simulation on Transmutation of Long-lived Fission Product 135Cs by Shanghai Laser Electron Gamma Source[J]. Atomic Energy Science and Technology, 2016, 50(5): 884-890. DOI: 10.7538/yzk.2016.50.05.0884
Citation: LI Zhuo-cheng, ZHU Zhi-chao, SONG Ying-ming, FAN Gong-tao, WANG Xiao-dong, WANG Xing-liu, LUO Wen. Simulation on Transmutation of Long-lived Fission Product 135Cs by Shanghai Laser Electron Gamma Source[J]. Atomic Energy Science and Technology, 2016, 50(5): 884-890. DOI: 10.7538/yzk.2016.50.05.0884

Simulation on Transmutation of Long-lived Fission Product 135Cs by Shanghai Laser Electron Gamma Source

More Information
  • Combining Monte Carlo laser-Compton scattering X/γ-ray simulation program 4D-MCLCSS and Geant4 toolkit, the γ-ray production and the induced photo-transmutation of 135Cs using Shanghai Laser Electron Gamma Source (SLEGS) were modeled. The dependence of photon-transmutation rate on the 135Cs target geometry parameter was predicted. The distribution of transmutation product of 135Cs was also investigated. It is found that an optimal thickness and radius for 135Cs target are 55 cm and 0.6 cm, respectively. Accordingly, the photon-transmutation rate is calculated to be 1.62×106 s-1, which is an order of magnitude higher than that by laser-driven bremsstrahlung sources. It is suggested that the SLEGS facility is useful for photon-transmutation of long-lived fission products, such as 135Cs.
  • [1]
    OHKI S, TAKAKI N. Transmutation of cesium-135 with fast reactor[C]∥OECD/NEA 7th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation. Japan: JNC, 2002: 943-950.
    [2]
    YANG W S, KIM Y, HILL R N. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318.
    [3]
    LEEMANS W P, RODGERS D, CATRAVAS P E, et al. Gamma-neutron activation experiments using laser wakefield accelerators[J]. Physics of Plasmas, 2001, 8(5): 2510-2516.
    [4]
    SCHWOERER H, EWALD F, SAUERBREY R, et al. Fission of actinides using a tabletop laser[J]. Europhysics Letters, 2003, 61(1): 47-52.
    [5]
    SADIGHI-BONABI R, IRANI E, SAFAIE B, et al. Possibility of ultra-intense laser transmutation of 93Zr(γ,n)92Zr a long-lived nuclear waste into a stable isotope[J]. Energy Conversion and Management, 2010, 51(4): 636-639.
    [6]
    IMASAKI K, LI D, MIYAMOTO S, et al. High-brightness γ-ray generation for nuclear transmutation[J]. Lecture Notes in Physics, 2006, 694: 147-167.
    [7]
    MIYAMOTO S, ASANO Y, AMANO S, et al. Laser Compton back-scattering gamma-ray beamline on NewSUBARU[J]. Radiation Measurements, 2006, 41(3): S179-S185.
    [8]
    CAI D F, GU Y Q, ZHENG Z J, et al. Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets[J]. Chinese Physics, 2006, 15(10): 2363-2367.
    [9]
    SADIGHI-BONABI R, KOKABEE O. Evaluation of transmutation of 137Cs(γ, n)136Cs using ultra intense lasers in solid targets[J]. Chinese Physics Letters, 2006, 23(6): 1434-1436.
    [10]
    MAGILL J, SCHWOERER H, EWALD F, et al. Laser transmutation of iodine-129[J]. Applied Physics B, 2003, 77(4): 387-390.
    [11]
    IRANI E, OMIDVAR H, SADIGHI-BONABI R, et al. Gamma rays transmutation of palladium by bremsstrahlung and laser inverse Compton scattering[J]. Energy Conversion and Management, 2014, 77: 558-563.
    [12]
    CHEN J G, XU W, WANG H W, et al. A potential- photo-transmutation of fission products triggered by Compton backscattering photons[J]. Nuclear Instruments and Methods in Physics Research A, 2009, 599(1): 118-123.
    [13]
    LUO W, XU W, PAN Q Y, et al. 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 660(1): 108-115.
    [14]
    LUO W, ZHUO H B, MA Y Y, et al. Attosecond Thomson-scattering X-ray source driven by laser-based electron acceleration[J]. Applied Physics Letters, 2013, 103(17): 174103-1-174103-4.
    [15]
    LUO W, ZHUO H B, SONG Y M, et al. The nonlinear effect in relativistic Compton scattering for circularly polarized intense laser[J]. Physica Scripta, 2014, 89(7): 075208-1-075208-5.
    [16]
    AGOSTINELLI S, ALLISON J, AMAKO K, et al. Geant4: A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A, 2003, 506(3): 250-303.
    [17]
    PAN Q Y, XU W, LUO W, et al. A future laser Compton scattering (LCS) γ-ray source: SLEGS at SSRF[J]. Synchrotron Radiation News, 2009, 22(3): 11-20.
    [18]
    LUO W, XU W, PAN Q Y, et al. Tunable X-ray generation by guiding of laser incident angle from laser-Compton scattering[J]. Applied Physics B, 2010, 101(4): 761-771.
    [19]
    SALOMMA R, AARNIO P, ALAHEIKKILA J, et al. Laser-enhanced radioactive decay and selective transmutation of nuclei revisited[J]. Energy Conversion and Management, 2008, 49(2): 190-196.
    [20]
    CHEN Jingen, XU Wang, WANG Hongwei, et al. Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai Laser Electron Gamma Source[J]. Chinese Physics C, 2008, 32(8): 677-680.
    [21]
    Geant4 physics reference manual[M/OL]. EUR: CERN, 2014: 602-605. http:∥geant4.web.cern. ch/geant4/User Documentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf.
    [22]
    卢希庭,江栋兴,叶沿林. 原子核物理[M]. 北京:原子能出版社,2000:238.
    [23]
    BLOKHIN A I, CHADWICK M B, FUKAHORI T, et al. Handbook on photonuclear data for applications cross-section and spectra[M]. Vienna: IAEA, 2000: 227.
    [24]
    TAKASHIMA R, HASEGAWA S, NEMOTO K, et al. Possibility of transmutation of 135Cs by ultraintense laser[J]. Applied Physics Letters, 2005, 86(1): 011501-1-011501-3.

Catalog

    Article views (197) PDF downloads (1117) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return