CHEN Shi-jia, GONG Xue-yu, LI Xin-xia, HE Zhi-xiong, LU Xing-qiang. Numerical Study on Suppression of Radio Frequency Wave Current Drive on Double Tearing Modes Instability[J]. Atomic Energy Science and Technology, 2017, 51(4): 597-602. DOI: 10.7538/yzk.2017.51.04.0597
Citation: CHEN Shi-jia, GONG Xue-yu, LI Xin-xia, HE Zhi-xiong, LU Xing-qiang. Numerical Study on Suppression of Radio Frequency Wave Current Drive on Double Tearing Modes Instability[J]. Atomic Energy Science and Technology, 2017, 51(4): 597-602. DOI: 10.7538/yzk.2017.51.04.0597

Numerical Study on Suppression of Radio Frequency Wave Current Drive on Double Tearing Modes Instability

More Information
  • Controlling double tearing modes instability by radio frequency (RF) wave current drive was explored by using numerical simulation with incompressible magnetohydrodynamics (MHD) in a periodic cylinder. The results show that a localized driven current along the background current direction on rational surfaces in Tokamak device has a suppression effect on the 3/1 double tearing modes instability, and the optimal initial localized driven current is current with Icd=4%I and δcd=0.07a. In addition, only when the localized driven current is injected before the fast growth stage, the double tearing modes can be suppressed.
  • [1]
    PRIEST E, FORBES T. Magnetic reconnection: MHD theory and applications[M]. UK: Cambridge University Press, 2000.
    [2]
    ZOHM H, GANTENBEIN G, ISAYAMA A, et al. MHD limits to Tokamak operation and their control[J]. Plasma Physics & Controlled Fusion, 2003, 45(12A): A163-A173.
    [3]
    WANG Z X, WEI L, WANG X, et al. Fast linear growth of collisionless double tearing modes in a cylindrical plasma[J]. Nuclear Fusion, 2011, 51(3): 209-213.
    [4]
    ZHANG C L, MA Z W. Nonlinear evolution of double tearing mode in Hall magnetohydrodynamics[J]. Physics of Plasmas, 2009, 16(12): 113-122.
    [5]
    DONG J Q, MOU Z Z, LONG Y X, et al. Study of internal transport barrier triggering mechanism in Tokamak plasmas[J]. Physics of Plasmas, 2004, 11(12): 5673-5679.
    [6]
    何志雄,董家齐,何宏达,等. 反常电子粘滞性引起的线性双撕裂模研究[J]. 核聚变与等离子体物理,2011,31(1):8-14. HE Zhixiong, DONG Jiaqi, HE Hongda, et al. Double tearing modes induced by anomalous electron viscosity[J]. Fusion and Physics Plasma, 2011, 31(1): 8-14(in Chinese).
    [7]
    ZOHM H, GANTENBEIN G, LEUTERER F, et al. Control of MHD instabilities by ECCD: ASDEX upgrade results and implications for ITER[J]. Nuclear Fusion, 2007, 47(3): 228-232.
    [8]
    NAGASAKI K, ISAYAMA A, IDE S, et al. LETTER: Stabilization effect of early ECCD on a neoclassical tearing mode in the JT-60U Tokamak[J]. Nuclear Fusion, 2003, 43(10): L7-L10.
    [9]
    WELANDER A S, LAHAYE R J, PENAFLOR B G, et al. Control of neoclassical tearing modes in DⅢ-D[J]. Physics of Plasmas, 2002, 9(5): 2051-2060.
    [10]
    BERRINO J, CIRANT S, GANDINI F. Automatic real-time tracking and stabilization of magnetic islands in a Tokamak using temperature fluctuations and ECW power[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1009-1014.
    [11]
    CHEN L, LIU J, DUAN P, et al. Numerical study on the influence of electron cyclotron current drive on tearing mode[J]. Physics of Plasmas, 2014, 21(10): 102-106.
    [12]
    杨振,路兴强,龚学余. 外部驱动电流抑制双撕裂模的发展[J]. 计算物理,2015,32(5):617-622. YANG Zhen, LU Xingqiang, GONG Xueyu. Satabilization of double tearing modes by external current drive[J]. Computational Physics, 2015, 32(5): 617-622(in Chinese).
    [13]
    LI X X, LU X Q, GONG X Y, et al. A study of shear flows induced by nonlinear evolution of double tearing modes in Hall magnetohydrodynamics[J]. European Physical Journal D, 2011, 64(2): 365-368.
    [14]
    李新霞,路兴强,龚学余. 双撕裂模非线性演化过程中有理面上的剪切流[J]. 计算物理,2011,28(6):831-834. LI Xinxia, LU Xingqiang, GONG Xueyu. Shear flows in resonant surfaces during nonlinear evolution of double tearing modes[J]. Conputational Physics, 2011, 28(6): 831-834(in Chinese).
    [15]
    NISHIKAWA K, WAKATANI M. Plasma physics: Basic theory with fusion applications[M]. Germany: Springer Science and Business Media, 2013.
    [16]
    BIERWAGE A, HAMAGUCHI S, WAKATANI M, et al. Nonlinear evolution of q=1, triple tearing modes in a Tokamak plasma[J]. Physical Review Letters, 2004, 94(6): 7-12.
    [17]
    LAZZARO E. Strong nonlinear effects in the dynamics of tearing modes controlled by electron cyclotron current drive[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 3002-3003.
    [18]
    ISHII Y, AZUMI M, KISHIMOTO Y. Structure-driven nonlinear instability of double tearing modes and the abrupt growth after long-time-scale evolution[J]. Physical Review Letters, 2002, 89(20): 111-118.
    [19]
    CHANG Z, PARK W, FREDRICKSON E D, et al. Off-axis sawteeth and double-tearing reconnection in reversed magnetic shear plasmas in TFTR[J]. Physical Review Letters, 1996, 77(17): 3553-3556.
    [20]
    FOWLER R H, KAPITZA P. The international series of monographs on physics[M]. UK: Clarendon Press, Oxford University Press, 1947.
  • Related Articles

    [1]LU Daogang, LYU Siyu, SUI Danting. Simulation of FFTF Loss of Flow without Scram Test Based on System Code SAC-3D[J]. Atomic Energy Science and Technology, 2021, 55(8): 1345-1352. DOI: 10.7538/yzk.2021.youxian.0274
    [2]YUE Zhiting, LIU Xingmin, GUO Chunqiu, ZOU Jiaxun, YIN Hao, ZHANG Yan. Analysis of SBO-ATWS Accident of 49-2 Pool Type Low Temperature Heating Reactor[J]. Atomic Energy Science and Technology, 2020, 54(8): 1426-1432. DOI: 10.7538/yzk.2020.youxian.0038
    [3]YU Hong, ZHANG Ming-kui. Reliability Analysis of Mitigation System for ATWS[J]. Atomic Energy Science and Technology, 2016, 50(10): 1805-1816. DOI: 10.7538/yzk.2016.50.10.1805
    [4]ZHANG Juan-hua, LIN Ji-ming. Improvement of ATWS Protective Signal and Mitigation System for CPR1000 Nuclear Power Plant[J]. Atomic Energy Science and Technology, 2015, 49(10): 1811-1814. DOI: 10.7538/yzk.2015.49.10.1811
    [5]ZHANG Ya-dong, GUO Yue, WU Yuan-yuan, ZOU Yao. Screening and Analysis of Beyond Design Basis Accident of 49-2 SPR[J]. Atomic Energy Science and Technology, 2015, 49(8): 1405-1409. DOI: 10.7538/yzk.2015.49.08.1405
    [6]GUO Chao, LU Dao-gang, SUI Dan-ting, ZHANG Xun, ZHANG Fan, YUAN Bo. EBR-Ⅱ LOHSWS Accident Analysis by Using SAC-CFR System Analysis Code[J]. Atomic Energy Science and Technology, 2015, 49(3): 473-479. DOI: 10.7538/yzk.2015.49.03.0473
    [7]SU Zhao-kui, ZHOU Liang, ZHANG Long-qiang, ZHANG Li-ming, ZHANG Xue-gang. Discussion of DCS Quality Bit Transmission Principle for CRP1000 Nuclear Power Plant[J]. Atomic Energy Science and Technology, 2014, 48(增刊2): 863-867. DOI: 10.7538/yzk.2014.48.S1.0863
    [8]XIONG Yi-qiang, LIN Meng, LIU Peng-fei, YANG Yan-hua. Transient Analysis on Failures of Feed Water Pump at CPR1000 Nuclear Power Station[J]. Atomic Energy Science and Technology, 2012, 46(7): 831-836. DOI: 10.7538/yzk.2012.46.07.0831
    [9]ZHANG Ya-pei, TIAN Wen-xi, QIU Sui-zheng, SU Guang-hui. Transient Analysis of Passive Emergency Feedwater System of CPR1000[J]. Atomic Energy Science and Technology, 2011, 45(10): 1198-1202. DOI: 10.7538/yzk.2011.45.10.1198
    [10]Wang Wujun Shan Jianqiang Wang Xuerong Zhu Jizhou (Department of Nuclear and Thermal Energy Engineering, Xi'an Jiaotong University, 710049). TRANSIENT BEHAVIOR OF THE LOSS OF HEAT SINK WITHOUT SCRAM AND INHERENT SAFETY OF SODIUM COOLED FAST REACTOR[J]. Atomic Energy Science and Technology, 1999, 33(6): 540-540. DOI: 10.7538/yzk.1999.33.06.0540

Catalog

    Article views (379) PDF downloads (1417) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return