MA Feng, JIN Qiang, GAO Peng-yuan, CHEN Zong-yuan, LU Jia-chun, GUO Zhi-jun, WU Wang-suo. Experimental and Modeling Study of Np(Ⅴ) Adsorption on Zhangzhou Illite[J]. Atomic Energy Science and Technology, 2017, 51(5): 790-797. DOI: 10.7538/yzk.2017.51.05.0790
Citation: MA Feng, JIN Qiang, GAO Peng-yuan, CHEN Zong-yuan, LU Jia-chun, GUO Zhi-jun, WU Wang-suo. Experimental and Modeling Study of Np(Ⅴ) Adsorption on Zhangzhou Illite[J]. Atomic Energy Science and Technology, 2017, 51(5): 790-797. DOI: 10.7538/yzk.2017.51.05.0790

Experimental and Modeling Study of Np(Ⅴ) Adsorption on Zhangzhou Illite

More Information
  • The adsorption of Np(Ⅴ) on Zhangzhou illite was studied as a function of solid-to-liquid ratio, pH, ionic strength and Np(Ⅴ) concentration, by using a batch experimental method. Np(Ⅴ) adsorption on Zhangzhou illite is shown to be sensitive to pH, whereas it is insensitive to ionic strength. 2SPNE SC/CE model, developed from Puy-en-Velay illite (France), cannot interpret both titration and adsorption data of Zhangzhou illite. A new adsorption model was constructed with the framework of 2SPNE SC/CE model to interpret the data. Comparing with 2SPNE SC/CE model, the site capacity of the new model is much lower, and corresponding constants of protolysis and complexation reactions are quite different as well. The reason for these differences may be due to the fact that the specific surface area of Zhangzhou illite is lower, and the ratio of isomorphous substitution (i.e. content of Fe2O3 and MgO) in Puy-en-Velay illite is higher than the one of Zhangzhou illite. The results are useful for predicting more accurately the Np(Ⅴ) adsorption on illite originated from different regions, and provide references for the siting of high-level radioactive waste repository in China.
  • [1]
    陈宗元,张瑞,杨兴龙,等. Co(Ⅱ)和Ni(Ⅱ)在北山花岗岩上的吸附:表面配位模型及线性自由能关系[J]. 物理化学学报,2013,29(9):2019-2026.CHEN Zongyuan, ZHANG Rui, YANG Xinglong, et al. Adsorption of Co(Ⅱ) and Ni(Ⅱ) on Beishan granite: Surface complexation model and linear free energy relationship[J]. Acta Physico-Chimica Sinica, 2013, 29(9): 2019-2026(in Chinese).
    [2]
    BRADBURY M H, BAEYENS B. A mechanistic description of Ni and Zn sorption on Na-montmorillonite, Part Ⅱ: Modelling[J]. Journal of Contaminant Hydrology, 1997, 27(3-4): 223-248.
    [3]
    BRADBURY M H, BAEYENS B. Sorption modelling on illite, Part I: Titration measurements and the sorption of Ni, Co, Eu and Sn[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 990-1003.
    [4]
    FROHLICH D R. Sorption of neptunium on clays and clay minerals: A review[J]. Clays and Clay Minerals, 2015, 63(3-4): 262-276.
    [5]
    LIU C L, WANG Z M, LI S S, et al. The migration of radionuclides 237Np, 238Pu and 241Am in a weak loess aquifer: A field column experiment[J]. Radiochimica Acta, 2001, 89(8): 519-522.
    [6]
    KASZUBA J P, RUNDE W H. The aqueous geochemistry of neptunium: Dynamic control of soluble concentrations with applications to nuclear waste disposal[J]. Environmental Science & Technology, 1999, 33(24): 4427-4433.
    [7]
    SCHMEIDE K, BERNHARD G. Sorption of Np(Ⅴ) and Np(Ⅳ) onto kaolinite: Effects of pH, ionic strength, carbonate and humic acid[J]. Applied Geochemistry, 2010, 25(8): 1238-1247.
    [8]
    AKSOYOGLU S, BURKART W, GOERLICH W. Sorption of neptunium on clays[J]. Journal of Radioanalytical and Nuclear Chemistry, 1991, 149(1): 119-122.
    [9]
    TINNACHER R M, ZAVARIN M, POWELL B A, et al. Kinetics of neptunium(Ⅴ) sorption and desorption on goethite: An experimental and modeling study[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6584-6599.
    [10]
    KOCH-STEINDL H, PROHL G. Considerations on the behaviour of long-lived radionuclides in the soil[J]. Radiation and Environmental Biophysics, 2001, 40(2): 93-104.
    [11]
    NAGASAKI S, SAITO T, YANG T T. Sorption behavior of Np(Ⅴ) on illite, shale and MX-80 in high ionic strength solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(1): 143-153.
    [12]
    NAGASAKI S, TANAKA S, TODORIKI M, et al. Sorption equilibrium and kinetics of NpO+2 uptake onto illite[J]. Radiochimica Acta, 1998, 82(s1): 263-267.
    [13]
    MACRSAC R, BANIK N L, LEUTZENKIRCHEN J, et al. Neptunium redox speciation at the illite surface[J]. Geochimica et Cosmochimica Acta, 2015, 152: 39-51.
    [14]
    MOORE F L. Separation and determination of neptunium by liquid-liquid extraction[J]. Analytical Chemistry, 1957, 29(6): 941-944.
    [15]
    DIPRETE D P, DIPRETE C C, KYSER E A, et al. Rapid measurements of neptunium oxidation states using chromatographic resins[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 282(2): 581-584.
    [16]
    LI P, LIU Z, LIN J F, et al. A method for Np-237 determination with LSC in the experiment of neptunium sorption onto bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3): 1973-1978.
    [17]
    HERBELIN A L, WESTALL J C. FITEQL (Version 3.1): A computer program for determination of chemical equilibrium constants from experimental data, Report 94-01[R]. Corvallis, Oregon: Department of Chemistry, Oregon State University, 1994.
    [18]
    PARKHURST D L, APPELO C A J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations, Water-Resources Investigation Report 99-4259[R]. US: US Geological Survey, 1999.
    [19]
    HUMMEL W, BERNER U, CURTI E, et al. Nagra/PSI chemical thermodynamic data base 01/01[M]. USA: Universal-Publishers, 2002.
    [20]
    SRODON J. X-ray powder diffraction identification of illitic materials[J]. Clays & Clay Minerals, 1984, 32(5): 337-349.
    [21]
    RAI D, STRICKERT R G, MCVAY G L. Neptunium concentrations in solutions contacting actinide-doped glass[J]. Nuclear Technology, 1982, 58(1): 69-76.
    [22]
    SCHMEIDE K, BERNHARD G. Sorption of Np(Ⅴ) and Np(Ⅳ) onto kaolinite: Effects of pH, ionic strength, carbonate and humic acid[J]. Applied Geochemistry, 2010, 25(8): 1238-1247.
    [23]
    ZAVARIN M, POWELL B A, BOURBIN M, et al. Np(Ⅴ) and Pu(Ⅴ) ion exchange and surface-mediated reduction mechanisms on montmorillonite[J]. Environmental Science & Technology, 2012, 46(5): 2692-2698.

Catalog

    Article views (379) PDF downloads (1288) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return