XIE Jun, ZHANG Zhao-rui, HUANG Yan-hua, JIANG Bai-bin, ZHANG Hai-jun, LI Guo, SONG Cheng-wei, WEI Sheng, GAO Sha-sha. Electrical Discharge Machining Technology of Semiconductor Boron Cylindrical Micro-target[J]. Atomic Energy Science and Technology, 2017, 51(10): 1915-1920. DOI: 10.7538/yzk.2017.51.10.1915
Citation: XIE Jun, ZHANG Zhao-rui, HUANG Yan-hua, JIANG Bai-bin, ZHANG Hai-jun, LI Guo, SONG Cheng-wei, WEI Sheng, GAO Sha-sha. Electrical Discharge Machining Technology of Semiconductor Boron Cylindrical Micro-target[J]. Atomic Energy Science and Technology, 2017, 51(10): 1915-1920. DOI: 10.7538/yzk.2017.51.10.1915

Electrical Discharge Machining Technology of Semiconductor Boron Cylindrical Micro-target

More Information
  • In the study of inertial confinement fusion, the boron cylindrical micro-target can be used as hohlraum filling material. In this paper, the boron cylindrical micro target was machined by electrical discharge machining (EDM) milling technology, and the dielectric is material which has higher carbon content and the electrode material is tungsten steel which has good electrical conductivity. The boron column size was characterized by OLYMPUS STM6 measuring microscope. The results show that dimension precision of diameter is less than 10 μm. The morphology of the sample was analyzed by scanning electron microscopy (SEM). The results show that the surface morphology of boron is unchanged. The surface conductive layer of sample was characterized by energy dispersive spectrum (EDS) analysis and X-ray energy spectrum (XPS) analysis. The results show that during the EDM milling process, because the dielectric breaks into free carbon and the electrode material is fused and deposited on the surface of the workpiece, the auxiliary conductive layer is formed. Through machining processing of the auxiliary conductive layer, the instantaneous high temperature causes the boron to melt and gasify, thus machining processing of the semiconductor boron is realized.
  • [1]
    杨细平,邱祖民. 硼及其硼化物的应用研究进展[J]. 化工技术与开发,2008,37(6):22-24.YANG Xiping, QIU Zumin. Application and research development of boron and boride[J]. Technology & Development of Chemtiacl Industry, 2008, 37(6): 22-24(in Chinese).
    [2]
    赵晶,李富,刘志宏,等. 高温气冷堆控制棒硼燃耗特性分析[J]. 原子能科学技术,2011,45(12):1484-1488.ZHAO Jing, LI Fu, LIU Zhihong, et al. Analysis of boron depletion in HTR control rod[J]. Atomic Energy Science and Technology, 2011, 45(12): 1484-1488(in Chinese).
    [3]
    LIU T K, LUH S P, PERNG H C. Effect of boron particle surface coating on combustion of solid p ropellants for ducted rockets[J]. Propellant, Explosive, Pyrotechnics, 1991, 16(4): 156-166.
    [4]
    PRICE E W, BRADLEY H H, Jr, DEHORITY G L, et al. Theory of ignition of solid propellant[J]. AIAA Journal, 1966, 4(7): 1153-1181.
    [5]
    NAGAMATSU J, NAKAGAWA N. Superconductivity at 39 K in magnesium dibofide[J]. Nature, 2001, 410: 63-64.
    [6]
    BARTLEY C, VALENTE T, TULUI M. Plasma spray deposition and high temperature characterization of ZrB2 SiC protective coatings[J]. Surface and Coatings Technology, 2002, 155(2): 260-273.
    [7]
    许国基,魏永钦. 硼靶制备技术的研究[J]. 原子能科学技术,1999,33(4):357-359.XU Guoji, WEI Yongqing. The preparation of boron targets[J]. Atomic Energy Science and Technology, 1999, 33(4): 357-359(in Chinese).
    [8]
    JAQUEZ J S, NIKROO A, WILKENS H L. Fabrication and characterization of hohlraums with a Co-mixed gold-boron layer[J]. Fusion Science & Technology, 2009, 55(3): 313-317.
    [9]
    ALFBRD C S. Sputter deposited beryllium fuel capsules for MF:UCRHD-129463[R]. California: Lawrence Livermore National Laboratory, 1998.
    [10]
    HOARTY D, WILLI O, WATT R, et al. Observation of ionization fronts in low density foam target[J]. Physics of Plasmas, 1999, 6(5): 2171-2177.
    [11]
    谢军,邢丕峰,易泰民,等. 真空热压技术制备EOS实验用LiH薄膜[J]. 稀有金属材料与工程,2013,42(2):424-427.XIE Jun, XING Pifeng, YI Taimin, et al. Fabrication LiH film used in EOS experiment by vacuum hot pressing technology[J]. Rare Metal Materials and Engineering, 2013, 42(2):424-427(in Chinese).
    [12]
    余家珊. 电火花加工理论基础[M]. 北京:国防工业出版社,2011:182-186.
  • Related Articles

    [1]DONG Xiaoxu, GENG Lisheng. Machine Learning Method in Study of Nuclear Charge Radius[J]. Atomic Energy Science and Technology, 2023, 57(4): 679-695. DOI: 10.7538/yzk.2022.youxian.0859
    [2]REN Li, QIU Rui, WU Zhen, LI Jun-li. Research on Modeling of Skeletal Composite Voxel Model Based on Micro-CT Image[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 773-779. DOI: 10.7538/yzk.2014.48.S0.0773
    [3]DENG Hong-chen, ZHANG Qin, ZHAO Yue, DONG Chun-ling. DUCG Reasoning Machine Design and Implementation in Nuclear Power Plant Fault Diagnosis[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 491-495. DOI: 10.7538/yzk.2014.48.S0.0491
    [4]LI Peng-cheng, DAI Li-cao, ZHANG Li, ZHAO Ming, HU Hong. Study on HRA-based Method for Assessing Digital Man-machine Interface[J]. Atomic Energy Science and Technology, 2014, 48(12): 2340-2347. DOI: 10.7538/yzk.2014.48.12.2340
    [5]ZHU Xiu-rong, ZHOU Bin, YE Jun-jian, XIE Zhi-yong, DU Ai, ZHANG Zhi-hua, SHEN Jun, WU Guang-ming, NI Xing-yuan. Fabrication of Dual-layer Polystyrene/Al Perturbation Target[J]. Atomic Energy Science and Technology, 2013, 47(5): 833-837. DOI: 10.7538/yzk.2013.47.05.0833
    [6]MA Yuan-wei, WANG De-zhong, YU Wen-dan, ZHU Yue-long, ZHANG Kuo. Environmental γ Dose Rate Model Based on Support Vector Machine[J]. Atomic Energy Science and Technology, 2011, 45(11): 1393-1398. DOI: 10.7538/yzk.2011.45.11.1393
    [7]Hong-bo, WAN Xiao-bo, ZHANG Lin, YUAN Guang-hui, XIU Peng, ZHANG Yong. Fabrication of Silica Aerogel Micro-cylinder for Inertial Confinement Fusion Target[J]. Atomic Energy Science and Technology, 2007, 41(5): 633-636. DOI: 10.7538/yzk.2007.41.05.0633
    [8]XIE Jun, HUANG Yan-hua, WU Wei-dong, TANG Yong-jian(Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang 621900, China). Application of Single Point Diamond Turning Technology in the Field of ICF Target Fabrication[J]. Atomic Energy Science and Technology, 2005, 39(3): 274-274. DOI: 10.7538/yzk.2005.39.03.0274
    [9]CHEN Xiao-ming~1, GAO Zu-ying~1, ZHOU Zhi-wei~1, ZHAO Bing-quan~1, Nakagawa~2, WU Wei~2(1.Institute of Nuclear Energy Technology, Tsinghua University, Beijing 100084, China;2.Advanced Technology R&D Center, MITSUBISHI Electric Corporation, Hyogo 6618661, Japan). Man-machine Interfaces Analysis System Based on Computer Simulation[J]. Atomic Energy Science and Technology, 2004, 38(1): 70-70. DOI: 10.7538/yzk.2004.38.01.0070
    [10]YIN Bang-yue, WANG Ling-sen (1. China Institute of Atomic Energy, P. O. Box 275-51, Beijing 102413, China; 2. State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China). Studies on Activated Sintering of Jet Milled B_4C Powders[J]. Atomic Energy Science and Technology, 2003, 37(S1): 70-70. DOI: 10.7538/yzk.2003.37.S1.0070

Catalog

    Article views (183) PDF downloads (939) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return