Citation: | JIA Huiling, REN Baogen, LIU Xuejie, JIA Yankun, LI Mei, WU Jinxiu. First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface[J]. Atomic Energy Science and Technology, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693 |
[1] |
LIU H J, FENG Z Y, HUANG X W, et al. Study on purification and application of novel precipitant for ceria-based polishing powder[J]. Journal of Rare Earths, 2013, 31(2): 174-179.
|
[2] |
WANG L, ZHANG K, SONG Z, et al. Ceria concentration effect on chemical mechanical polishing of optical glass[J]. Applied Surface Science, 2007, 253(11): 4951-4954.
|
[3] |
HOSHINO T, KURATA Y, TERASAKI Y, et al. Mechanism of polishing of SiO2 films by CeO2 particles[J]. Journal of Non-Crystalline Solids, 2001, 283(1): 129-136.
|
[4] |
LEE S H, LU Z, BABU S V, et al. Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria[J]. Journal of Materials Research, 2002, 17(10): 2744-2749.
|
[5] |
SUN Y X, ZHANG L X, WANG Y B, et al. Hollow and hollow core/shell CeO2/SiO2@CeO2 spheres: Synthesis, structure evolution and catalytic properties[J]. Journal of Alloys & Compounds, 2014, 586(5): 441-447.
|
[6] |
柴明霞,胡建东,冯晓平,等. SiO2-CeO2复合氧化物的制备及抛光性能[J]. 无机化学学报,2007,23(4):623-629.CHAI Mingxia, HU Jiandong, FENG Xiaoping, et al. Preparation and polishing properties of SiO2-CeO2 mixed oxides[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4): 623-629(in Chinese).
|
[7] |
LEI H, CHU F L, XIAO B Q, et al. Preparation of silica/ceria nano composite abrasive and its CMP behavior on hard disk substrate[J]. Microelectronic Engineering, 2010, 87(9): 1747-1750.
|
[8] |
白林山,熊伟,储向峰,等. SiO2/CeO2复合磨粒的制备及在蓝宝石晶片抛光中的应用[J]. 光学精密工程,2014,22(5):1289-1295.BAI Linshan, XIONG Wei, CHU Xiangfeng, et al. Preparation of SiO2/CeO2 composite particles and their applications to CMP on sapphire substrates[J]. Optics and Precision Engineering, 2014, 22(5): 1289-1295(in Chinese).
|
[9] |
王永钊,赵永祥,刘滇生. CeO2-SiO2复合氧化物的制备表征及其负载Pd催化活性的研究[J]. 中国稀土学报,2003,21(2):52-54.WANG Yongzhao, ZHAO Yongxiang, LIU Dian sheng. Preparation, characterization and study of supported Pd catalytic activity of CeO2-SiO2 composite oxides[J]. Journal of Chinese Society for Rare Earth Sciences, 2003, 21(2): 52-54(in Chinese).
|
[10] |
SHEN D H, JI L T, FU L L, et al. Immobilization of metalloporphyrins on CeO2@SiO2 with a core-shell structure prepared via microemulsion method for catalytic oxidation of ethylbenzene[J]. Journal of Central South University, 2015, 22(3): 862-867.
|
[11] |
SON J H, KIM S W, BAE D S, et al. Synthesis and characterization of CeO2 doped SiO2 nanoparticles by a reverse micelle and so-gel processing[J]. Materials Science & Engineering A, 2008, 498(1): 2-4.
|
[12] |
SONG X L, JIANG N, LI Y K, et al. Synthesis of CeO2 coated SiO2 nanoparticle and dispersion stability of its suspension[J]. Materials Chemistry & Physics, 2008, 110(1): 128-135.
|
[13] |
ZHAO X B, LONG R W, CHEN Y, et al. Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior[J]. Microelectronic Engineering, 2010, 87(9): 1716-1720.
|
[14] |
GUO X, LI Y Y, SHEN D H, et al. Immobilization of cobalt porphyrin on CeO2@SiO2 core-shell nanoparticles as a novel catalyst for selective oxidation of diphenylmethane[J]. Journal of Molecular Catalysis A, 2013, 367(2): 7-11.
|
[15] |
慕利娟,张忠义,张立业,等. CeO2-SiO2复合氧化物的制备及性能表征[J]. 稀土,2013,34(2):12-16.MU Lijuan, ZHANG Zhongyi, ZHANG Liye, et al. Preparation and characterization of CeO2-SiO2 composite oxides[J]. Rare Earth, 2013, 34(2): 12-16(in Chinese).
|
[16] |
GRASSET F, MARCHAND R, MARIE A M, et al. Synthesis of CeO2@SiO2 core-shell nanoparticles by water-in-oil microemulsion preparation of functional thin film[J]. J Colloid Interface Sci, 2006, 299(2): 726-732.
|
[17] |
KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, 1994, 49(20): 14251-14269.
|
[18] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
|
[19] |
NOLAN M, GRIGOLEIT S, SAYLE D C, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria[J]. Surface Science, 2005, 576(1): 217-229.
|
[20] |
NOLAN M, PARKER S C, WATSON G W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria[J]. Surface Science, 2005, 595(1): 223-232.
|
[21] |
YANG Z X, WEI Y W, FU Z M, et al. Facilitated vacancy formation at Zr-doped ceria(111) surfaces[J]. Surface Science, 2008, 602(6): 1199-1206.
|
[22] |
YANG Z X, LU Z S, LUO G X, et al. Oxygen vacancy formation energy at the Pd/CeO2(111) interface[J]. Physics Letters A, 2007, 369(1): 132-139.
|
[23] |
LU Z S, YANG Z X, HE B L, et al. Cu-doped ceria: Oxygen vacancy formation made easy[J]. Chemical Physics Letters, 2011, 510(1): 60-66.
|
[24] |
YANG Z, WANG Q, WEI S. The effect of Zr-doping on the interaction of water molecules with the ceria(111) surface[J]. Surface Science, 2011, 605(3): 351-360.
|
[25] |
GERWARD L, OLSEN J S, PETIT L, et al. Bulk modulus of CeO2 and PrO2: An experimental and theoretical study[J]. Journal of Alloys & Compounds, 2005, 400(1): 56-61.
|
[26] |
HISASHIGE T, YAMAMURA Y, TSUJI T. Thermal expansion and Debye temperature of rare earth-doped ceria[J]. Journal of Alloys & Compounds, 2006, 408-412(2): 1153-1156.
|
[27] |
SAMESHIMA S, ONO H, HIGASHI K, et al. Microstructure of rare-earth-doped ceria prepared by oxalate coprecipitation method[J]. Journal of the Ceramic Society of Japan, 2000, 108: 985-988.
|
[28] |
YANG Z X, WOO T K, BAUDIN M, et al. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study[J]. Journal of Chemical Physics, 2004, 120(16): 7741-7751.
|
[29] |
路战胜,楚兴丽,杨宗献. Rh在CeO2(111)表面吸附的第一性原理研究[J]. 原子与分子物理学报,2010,27(3):581-587.LU Zhansheng, CHU Xingli, YANG Zongxian. First principles studies of the Rh/CeO2(111) interface[J]. Journal of Atomic and Molecular Physics, 2010, 27(3): 581-587(in Chinese).
|
[30] |
SHI S Q, TANG Y H, OUYANG C Y, et al. O-vacancy and surface on CeO2: A first-principles study[J]. Journal of Physics & Chemistry of Solids, 2010, 71(5): 788-796.
|
[31] |
NOLAN M, FEARON J E, WATSON G W. Oxygen vacancy formation and migration in ceria[J]. Solid State Ionics, 2006, 177: 3069-3074.
|
[32] |
基泰尔C. 固体物理导论[M]. 项金钟,吴兴惠,译. 北京:化学工业出版社,2014.
|
[33] |
路战胜,罗改霞,杨宗献. Pd与CeO2(111)面的相互作用的第一性原理研究[J]. 物理学报,2007,56(9):5382-5388.LU Zhansheng, LUO Gaixia, YANG Zongxian. First principles studies of the Pd/CeO2(111) interface[J]. Acta Physica Sinica, 2007, 56(9): 5382-5388(in Chinese).
|
[34] |
WUILLOUD E, DELLEY B, SCHNEIDER W D, et al. Spectroscopic evidence for localized and extended F-symmetry states in CeO2[J]. Physical Review Letters, 1984, 53(2): 202-205.
|
[35] |
王清高,杨宗献,危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究[J]. 物理化学学报,2009,25(12):2513-2518.WANG Qinggao, YANG Zongxian, WEI Shuyi. DFT+U study on the interaction of water molecule and ceria(111) surface[J]. Acta Physica Sinica, 2009, 25(12): 2513-2518(in Chinese).
|
[1] | ZHANG Yibang, DU Jinqiu, LIN Wuhui, LIU Chen, LU Bo, YAO Ziwei. Adsorption and Migration Studies of Major Natural and Artificial Radionuclides in Offshore[J]. Atomic Energy Science and Technology, 2024, 58(10): 2045-2057. DOI: 10.7538/yzk.2024.youxian.0375 |
[2] | ZHUANG Kun, WANG Lianjie, LIU Kun, YAN Jiangtao, SHANG Wen. Development and Verification of Hexagonal Quasi-diffusion Code Based on Variational Nodal Method[J]. Atomic Energy Science and Technology, 2023, 57(1): 147-155. DOI: 10.7538/yzk.2022.youxian.0013 |
[3] | CUI Zhiqiang, QU Jingyuan, TONG Jiejuan. Simulation of Radionuclide Migration and Diffusion in Yangtze River Delta[J]. Atomic Energy Science and Technology, 2020, 54(12): 2469-2475. DOI: 10.7538/yzk.2019.youxian.0927 |
[4] | NIU Jinlin, WU Yingjie, GUO Jiong, LI Fu. Neutron Diffusion Program Developed Based on MOOSE[J]. Atomic Energy Science and Technology, 2020, 54(1): 87-94. DOI: 10.7538/yzk.2019.youxian.0043 |
[5] | LI Ying-chan, ZHU Xin-xin, XIA Ti-rui. Diffusion and Permeation Behavior of Deuterium in Incoloy800H Alloy[J]. Atomic Energy Science and Technology, 2017, 51(8): 1464-1470. DOI: 10.7538/yzk.2017.51.08.1464 |
[6] | WANG Zhi-fen, HOU Min, CHEN Yu-chen, SHI Lei, WU Tao, LI Jin-ying. Diffusion Behavior of Re(Ⅶ) in Compacted Irradiated Bentonite[J]. Atomic Energy Science and Technology, 2017, 51(4): 617-621. DOI: 10.7538/yzk.2017.51.04.0617 |
[7] | XIONG Hui-fang, WANG Zhi-fen, BAO Su-su, ZHOU Yu-jie, LI Jin-ying, WU Tao. Se(Ⅳ) Diffusion Behavior in Illite-Montmorillonite Mixture[J]. Atomic Energy Science and Technology, 2017, 51(1): 13-18. DOI: 10.7538/yzk.2017.51.01.0013 |
[8] | ZHOU Xia-feng, LI Fu. Stability and Numerical Diffusion Analysis of Nodal Expansion Method for Convection-diffusion Equation[J]. Atomic Energy Science and Technology, 2015, 49(4): 705-712. DOI: 10.7538/yzk.2015.49.04.0705 |
[9] | DENG Jia-fu, YI Fa-cheng, WANG Zhe. Prediction of Radionuclide Cs Migration and Diffusion in Compacted Backfill Material[J]. Atomic Energy Science and Technology, 2011, 45(3): 288-292. DOI: 10.7538/yzk.2011.45.03.0288 |
[10] | LIU Yun-ming, YIN Chang-geng, SUN Chang-long, CHEN Jian-gang, SUN Xu-dong, YANG Hong-yan, GUO Zhen. Diffusion Behavior on U-10Mo/Al-Si Alloys[J]. Atomic Energy Science and Technology, 2009, 43(11): 1009-1016. DOI: 10.7538/yzk.2009.43.11.1009 |