JIA Huiling, REN Baogen, LIU Xuejie, JIA Yankun, LI Mei, WU Jinxiu. First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface[J]. Atomic Energy Science and Technology, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693
Citation: JIA Huiling, REN Baogen, LIU Xuejie, JIA Yankun, LI Mei, WU Jinxiu. First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface[J]. Atomic Energy Science and Technology, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693

First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface

More Information
  • In order to research the microscopic behavior of Si atom adsorbed on CeO2(111) surface, the adsorption, electronic structure and diffusion behavior of Si atom on CeO2(111) surface were studied using the first principle method. The adsorption energy was calculated. The electron states density, charge density distribution, diffusion activation energy of the most and sub-stable adsorption sites of Si atom on the CeO2(111) surface were also calculated. The results show that Si atom is most easily adsorbed on the surface layer of O atoms, in which the O bridge site (Obri) has the strongest adsorption, and the adsorption strength at the O top site (Ot) and the O three-fold site (Oh) is second. Si atom only has a great influence on the structure of the nearest surface of O atoms, which is consistent with the increase of the charge density overlap between the Si atom and its nearest neighbor O atoms. The Si atom most easily diffuses from the Obri site to Oh site while around the Ot site, and the required activation energy for diffusion is 0.849 eV.
  • [1]
    LIU H J, FENG Z Y, HUANG X W, et al. Study on purification and application of novel precipitant for ceria-based polishing powder[J]. Journal of Rare Earths, 2013, 31(2): 174-179.
    [2]
    WANG L, ZHANG K, SONG Z, et al. Ceria concentration effect on chemical mechanical polishing of optical glass[J]. Applied Surface Science, 2007, 253(11): 4951-4954.
    [3]
    HOSHINO T, KURATA Y, TERASAKI Y, et al. Mechanism of polishing of SiO2 films by CeO2 particles[J]. Journal of Non-Crystalline Solids, 2001, 283(1): 129-136.
    [4]
    LEE S H, LU Z, BABU S V, et al. Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria[J]. Journal of Materials Research, 2002, 17(10): 2744-2749.
    [5]
    SUN Y X, ZHANG L X, WANG Y B, et al. Hollow and hollow core/shell CeO2/SiO2@CeO2 spheres: Synthesis, structure evolution and catalytic properties[J]. Journal of Alloys & Compounds, 2014, 586(5): 441-447.
    [6]
    柴明霞,胡建东,冯晓平,等. SiO2-CeO2复合氧化物的制备及抛光性能[J]. 无机化学学报,2007,23(4):623-629.CHAI Mingxia, HU Jiandong, FENG Xiaoping, et al. Preparation and polishing properties of SiO2-CeO2 mixed oxides[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4): 623-629(in Chinese).
    [7]
    LEI H, CHU F L, XIAO B Q, et al. Preparation of silica/ceria nano composite abrasive and its CMP behavior on hard disk substrate[J]. Microelectronic Engineering, 2010, 87(9): 1747-1750.
    [8]
    白林山,熊伟,储向峰,等. SiO2/CeO2复合磨粒的制备及在蓝宝石晶片抛光中的应用[J]. 光学精密工程,2014,22(5):1289-1295.BAI Linshan, XIONG Wei, CHU Xiangfeng, et al. Preparation of SiO2/CeO2 composite particles and their applications to CMP on sapphire substrates[J]. Optics and Precision Engineering, 2014, 22(5): 1289-1295(in Chinese).
    [9]
    王永钊,赵永祥,刘滇生. CeO2-SiO2复合氧化物的制备表征及其负载Pd催化活性的研究[J]. 中国稀土学报,2003,21(2):52-54.WANG Yongzhao, ZHAO Yongxiang, LIU Dian sheng. Preparation, characterization and study of supported Pd catalytic activity of CeO2-SiO2 composite oxides[J]. Journal of Chinese Society for Rare Earth Sciences, 2003, 21(2): 52-54(in Chinese).
    [10]
    SHEN D H, JI L T, FU L L, et al. Immobilization of metalloporphyrins on CeO2@SiO2 with a core-shell structure prepared via microemulsion method for catalytic oxidation of ethylbenzene[J]. Journal of Central South University, 2015, 22(3): 862-867.
    [11]
    SON J H, KIM S W, BAE D S, et al. Synthesis and characterization of CeO2 doped SiO2 nanoparticles by a reverse micelle and so-gel processing[J]. Materials Science & Engineering A, 2008, 498(1): 2-4.
    [12]
    SONG X L, JIANG N, LI Y K, et al. Synthesis of CeO2 coated SiO2 nanoparticle and dispersion stability of its suspension[J]. Materials Chemistry & Physics, 2008, 110(1): 128-135.
    [13]
    ZHAO X B, LONG R W, CHEN Y, et al. Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior[J]. Microelectronic Engineering, 2010, 87(9): 1716-1720.
    [14]
    GUO X, LI Y Y, SHEN D H, et al. Immobilization of cobalt porphyrin on CeO2@SiO2 core-shell nanoparticles as a novel catalyst for selective oxidation of diphenylmethane[J]. Journal of Molecular Catalysis A, 2013, 367(2): 7-11.
    [15]
    慕利娟,张忠义,张立业,等. CeO2-SiO2复合氧化物的制备及性能表征[J]. 稀土,2013,34(2):12-16.MU Lijuan, ZHANG Zhongyi, ZHANG Liye, et al. Preparation and characterization of CeO2-SiO2 composite oxides[J]. Rare Earth, 2013, 34(2): 12-16(in Chinese).
    [16]
    GRASSET F, MARCHAND R, MARIE A M, et al. Synthesis of CeO2@SiO2 core-shell nanoparticles by water-in-oil microemulsion preparation of functional thin film[J]. J Colloid Interface Sci, 2006, 299(2): 726-732.
    [17]
    KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, 1994, 49(20): 14251-14269.
    [18]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
    [19]
    NOLAN M, GRIGOLEIT S, SAYLE D C, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria[J]. Surface Science, 2005, 576(1): 217-229.
    [20]
    NOLAN M, PARKER S C, WATSON G W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria[J]. Surface Science, 2005, 595(1): 223-232.
    [21]
    YANG Z X, WEI Y W, FU Z M, et al. Facilitated vacancy formation at Zr-doped ceria(111) surfaces[J]. Surface Science, 2008, 602(6): 1199-1206.
    [22]
    YANG Z X, LU Z S, LUO G X, et al. Oxygen vacancy formation energy at the Pd/CeO2(111) interface[J]. Physics Letters A, 2007, 369(1): 132-139.
    [23]
    LU Z S, YANG Z X, HE B L, et al. Cu-doped ceria: Oxygen vacancy formation made easy[J]. Chemical Physics Letters, 2011, 510(1): 60-66.
    [24]
    YANG Z, WANG Q, WEI S. The effect of Zr-doping on the interaction of water molecules with the ceria(111) surface[J]. Surface Science, 2011, 605(3): 351-360.
    [25]
    GERWARD L, OLSEN J S, PETIT L, et al. Bulk modulus of CeO2 and PrO2: An experimental and theoretical study[J]. Journal of Alloys & Compounds, 2005, 400(1): 56-61.
    [26]
    HISASHIGE T, YAMAMURA Y, TSUJI T. Thermal expansion and Debye temperature of rare earth-doped ceria[J]. Journal of Alloys & Compounds, 2006, 408-412(2): 1153-1156.
    [27]
    SAMESHIMA S, ONO H, HIGASHI K, et al. Microstructure of rare-earth-doped ceria prepared by oxalate coprecipitation method[J]. Journal of the Ceramic Society of Japan, 2000, 108: 985-988.
    [28]
    YANG Z X, WOO T K, BAUDIN M, et al. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study[J]. Journal of Chemical Physics, 2004, 120(16): 7741-7751.
    [29]
    路战胜,楚兴丽,杨宗献. Rh在CeO2(111)表面吸附的第一性原理研究[J]. 原子与分子物理学报,2010,27(3):581-587.LU Zhansheng, CHU Xingli, YANG Zongxian. First principles studies of the Rh/CeO2(111) interface[J]. Journal of Atomic and Molecular Physics, 2010, 27(3): 581-587(in Chinese).
    [30]
    SHI S Q, TANG Y H, OUYANG C Y, et al. O-vacancy and surface on CeO2: A first-principles study[J]. Journal of Physics & Chemistry of Solids, 2010, 71(5): 788-796.
    [31]
    NOLAN M, FEARON J E, WATSON G W. Oxygen vacancy formation and migration in ceria[J]. Solid State Ionics, 2006, 177: 3069-3074.
    [32]
    基泰尔C. 固体物理导论[M]. 项金钟,吴兴惠,译. 北京:化学工业出版社,2014.
    [33]
    路战胜,罗改霞,杨宗献. Pd与CeO2(111)面的相互作用的第一性原理研究[J]. 物理学报,2007,56(9):5382-5388.LU Zhansheng, LUO Gaixia, YANG Zongxian. First principles studies of the Pd/CeO2(111) interface[J]. Acta Physica Sinica, 2007, 56(9): 5382-5388(in Chinese).
    [34]
    WUILLOUD E, DELLEY B, SCHNEIDER W D, et al. Spectroscopic evidence for localized and extended F-symmetry states in CeO2[J]. Physical Review Letters, 1984, 53(2): 202-205.
    [35]
    王清高,杨宗献,危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究[J]. 物理化学学报,2009,25(12):2513-2518.WANG Qinggao, YANG Zongxian, WEI Shuyi. DFT+U study on the interaction of water molecule and ceria(111) surface[J]. Acta Physica Sinica, 2009, 25(12): 2513-2518(in Chinese).
  • Related Articles

    [1]ZHANG Yibang, DU Jinqiu, LIN Wuhui, LIU Chen, LU Bo, YAO Ziwei. Adsorption and Migration Studies of Major Natural and Artificial Radionuclides in Offshore[J]. Atomic Energy Science and Technology, 2024, 58(10): 2045-2057. DOI: 10.7538/yzk.2024.youxian.0375
    [2]ZHUANG Kun, WANG Lianjie, LIU Kun, YAN Jiangtao, SHANG Wen. Development and Verification of Hexagonal Quasi-diffusion Code Based on Variational Nodal Method[J]. Atomic Energy Science and Technology, 2023, 57(1): 147-155. DOI: 10.7538/yzk.2022.youxian.0013
    [3]CUI Zhiqiang, QU Jingyuan, TONG Jiejuan. Simulation of Radionuclide Migration and Diffusion in Yangtze River Delta[J]. Atomic Energy Science and Technology, 2020, 54(12): 2469-2475. DOI: 10.7538/yzk.2019.youxian.0927
    [4]NIU Jinlin, WU Yingjie, GUO Jiong, LI Fu. Neutron Diffusion Program Developed Based on MOOSE[J]. Atomic Energy Science and Technology, 2020, 54(1): 87-94. DOI: 10.7538/yzk.2019.youxian.0043
    [5]LI Ying-chan, ZHU Xin-xin, XIA Ti-rui. Diffusion and Permeation Behavior of Deuterium in Incoloy800H Alloy[J]. Atomic Energy Science and Technology, 2017, 51(8): 1464-1470. DOI: 10.7538/yzk.2017.51.08.1464
    [6]WANG Zhi-fen, HOU Min, CHEN Yu-chen, SHI Lei, WU Tao, LI Jin-ying. Diffusion Behavior of Re(Ⅶ) in Compacted Irradiated Bentonite[J]. Atomic Energy Science and Technology, 2017, 51(4): 617-621. DOI: 10.7538/yzk.2017.51.04.0617
    [7]XIONG Hui-fang, WANG Zhi-fen, BAO Su-su, ZHOU Yu-jie, LI Jin-ying, WU Tao. Se(Ⅳ) Diffusion Behavior in Illite-Montmorillonite Mixture[J]. Atomic Energy Science and Technology, 2017, 51(1): 13-18. DOI: 10.7538/yzk.2017.51.01.0013
    [8]ZHOU Xia-feng, LI Fu. Stability and Numerical Diffusion Analysis of Nodal Expansion Method for Convection-diffusion Equation[J]. Atomic Energy Science and Technology, 2015, 49(4): 705-712. DOI: 10.7538/yzk.2015.49.04.0705
    [9]DENG Jia-fu, YI Fa-cheng, WANG Zhe. Prediction of Radionuclide Cs Migration and Diffusion in Compacted Backfill Material[J]. Atomic Energy Science and Technology, 2011, 45(3): 288-292. DOI: 10.7538/yzk.2011.45.03.0288
    [10]LIU Yun-ming, YIN Chang-geng, SUN Chang-long, CHEN Jian-gang, SUN Xu-dong, YANG Hong-yan, GUO Zhen. Diffusion Behavior on U-10Mo/Al-Si Alloys[J]. Atomic Energy Science and Technology, 2009, 43(11): 1009-1016. DOI: 10.7538/yzk.2009.43.11.1009

Catalog

    Article views (143) PDF downloads (1023) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return