Citation: | SUN Qiunan, WEN Jiming, DING Ming, GU Haifeng. Influence of Aeration Appliance Construction on Bubbling Performance of Multi-orifice[J]. Atomic Energy Science and Technology, 2019, 53(2): 337-343. DOI: 10.7538/yzk.2018.youxian.0326 |
[1] |
NA Y S, HA K S, PARK R J, et al. Thermal hydraulic issues of containment filtered venting system for a long operating time[J]. Nuclear Engineering and Technology, 2014, 46(6): 797-802.
|
[2] |
WEN J, GU H, SUN Z, et al. A theoretical model and experiment validation on filtration characteristics of methyl iodide in bubble column[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1263-1273.
|
[3] |
Status report on filtered containment venting, NEA/CSNI/R(2014)7[R]. USA: OECD/NEA/CSNI, 2014.
|
[4] |
JAMIALAHMADI M, MÜULLER-STEINHAGEN H. Effect of superficial gas velocity on bubble size, terminal bubble rise velocity and gas hold-up in bubble columns[J]. Developments in Chemical Engineering and Mineral Processing, 1993, 1(1): 16-31.
|
[5] |
SNABRE P, MAGNIFOTCHAM F. Formation and rise of a bubble stream in a viscous liquid[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 1998, 4(3): 369-377.
|
[6] |
RUZICKA M C, VECER M M, ORVALHO S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4): 951-967.
|
[7] |
JAMIALAHMADI M, MÜULLER-STEINHAGEN H. Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns[J]. Chemical Engineering Journal, 1992, 50(1): 47-56.
|
[8] |
MARMUR A, RUBIN E. A theoretical model for bubble formation at an orifice submerged in an inviscid liquid[J]. Chemical Engineering Science, 1976, 31(6): 453-463.
|
[9] |
ZHANG L, SHOJI M. Aperiodic bubble formation from a submerged orifice[J]. Chemical Engineering Science, 2001, 56(18): 5371-5381.
|
[10] |
BADAM V K, BUWA V, DURST F. Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition[J]. The Canadian Journal of Chemical Engineering, 2007, 85(3): 257-267.
|
[11] |
FAN W, QI T, SUN Y, et al. Coalescence deformation of bubble pairs generated from twin nozzles in CMC solutions[J]. Chemical Engineering and Technology, 2016, 39(10): 1895-1902.
|
[12] |
MARTÍN M, GARCÍA J M, MONTES F J, et al. On the effect of the orifice configuration on the coalescence of growing bubbles[J]. Chemical Engineering and Processing, 2008, 47(9-10): 1799-1809.
|
[13] |
沈鉴彪,王立. 相间传质对气泡聚并过程影响的实验研究[J]. 过程工程学报,2016,16(2):204-209.SHEN Jianbiao, WANG Li. Experimental study on the effect of interfacial mass transfer on coalescence of gas bubbles[J]. The Chinese Journal of Process Engineering, 2016, 16(2): 204-209(in Chinese).
|
[14] |
LOIMER T, MACHU G, SCHAFLINGER U. Inviscid bubble formation on porous plates and sieve plates[J]. Chemical Engineering Science, 2004, 54(4): 809-818.
|
[15] |
KAZAKIS N A, MOUZA A A, PARAS S V. Experimental study of bubble formation at metal porous spargers: Effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281.
|
[16] |
PARK Y, TYLER A L, NEVERS N D. The chamber orifice interaction in the formation of bubbles[J]. Chemical Engineering Science, 1977, 32(8): 907-916.
|