WANG Xiaohe, HU Jifeng, CHEN Jingen, CAI Xiangzhou, WANG Naxiu, WANG Hongwei, HAN Jianlong. Boron Equivalent Measurement of Nuclear Graphite with Photoneutron Source[J]. Atomic Energy Science and Technology, 2020, 54(11): 1991-1998. DOI: 10.7538/yzk.2019.youxian.0781
Citation: WANG Xiaohe, HU Jifeng, CHEN Jingen, CAI Xiangzhou, WANG Naxiu, WANG Hongwei, HAN Jianlong. Boron Equivalent Measurement of Nuclear Graphite with Photoneutron Source[J]. Atomic Energy Science and Technology, 2020, 54(11): 1991-1998. DOI: 10.7538/yzk.2019.youxian.0781

Boron Equivalent Measurement of Nuclear Graphite with Photoneutron Source

More Information
  • Impurities in nuclear materials with high thermal neutron absorption cross section will change the reactivity. The absorption of thermal neutrons by these impurities is represented by boron equivalent, which is one of the important factors to measure the purity of nuclear materials. Boron equivalent can be determined directly via the measurement of macroscopic thermal neutron absorption cross section based on an isotopic neutron source, but with lower accuracy. The photoneutron source, which can generate neutrons with higher intensity, better direction and lower energy, can effectively improve the accuracy of boron equivalence measurement. Therefore, the boron equivalent measurement of nuclear graphite was carried out with the photoneutron source driven by 15 MeV electron LINAC. Monte Carlo simulation method was used to optimize the experimental scheme, and the experimental data were tested and modified. Finally, the quantitative analysis method was established for the measurement of graphite boron equivalent. This method can quickly and accurately measure the boron equivalent of nuclear materials, which is of great significance for the physical design and safety assessment of the reactor.
  • [1]
    赵木. 高温气冷堆核级石墨相关问题研究[J]. 核安全,2014,13(4):34-38.ZHAO Mu. Study on related problems of nuclear graphite for high temperature gas-cooled reactor[J]. Nuclear Safety, 2014, 13(4): 34-38(in Chinese).
    [2]
    江绵恒,徐洪杰,戴志敏. 未来先进核裂变能:TMSR核能系统[J]. 中国科学院院刊,2012,27(3):366-374. JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy programTMSR nuclear energy system[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(3): 366-374(in Chinese).
    [3]
    VIRGIL′EV YU S. Impurities in and service ability of reactor graphite[J]. Atomic Energy, 1998, 84(1): 6-13.
    [4]
    赵晶,李富,魏春琳. 杂质硼在高温气冷堆中的燃耗特性[J]. 原子能科学技术,2012,46(2):172-175.ZHAO Jing, LI Fu, WEI Chunlin. Boron depletion in high-temperature gas-cooled reactor[J]. Atomic Energy Science and Technology, 2012, 46(2): 172-175(in Chinese).
    [5]
    IAEA. Guidelines for nuclear transfers, INFCIRC/254/Rev.5/Part 1[S]. Vienna: IAEA, 2002.
    [6]
    ROBERTSON R C. MSRE design and operations report,Part I: Description of reactor design, ORNL-TM-728[R]. US: ORNL, 1965.
    [7]
    CHEN Zhong, ZHAO Zijia, LV Zhongliang, et al. Coaxial stacking disjoint model study of 10 MW high temperature gas-cooled reactor (HTR-10)[J]. Nuclear Engineering and Design, 2019, 353: 110193.
    [8]
    何南玲,李秀娟,姜国杜,等. ICP-AES法测定二氧化镎粉末中的杂质元素[J]. 原子能科学技术,2019,53(3):539-545.HE Nanling, LI Xiujuan, JIANG Guodu, et al. Determination of impurity element in neptunium dioxide power by ICP-AES[J]. Atomic Energy Science and Technology, 2019, 53(3): 539-545(in Chinese).
    [9]
    YIN Liangliang, TIAN Qing, SHAO Xianzhang, et al. ICP-MS measurement of uranium and thorium contents in minerals in China[J]. Nuclear Science and Techniques, 2016, 27(1): 61-64.
    [10]
    李金英,王凡,赵永刚,等. 激光质谱的研究现状与进展[J]. 原子能科学技术,2012,46(10):1165-1174.LI Jinying, WANG Fan, ZHAO Yonggang, et al. Recent research and process of laser mass spectrometry[J]. Atomic Energy Science and Technology, 2012, 46(10): 1165-1174(in Chinese).
    [11]
    刘洁,钱荣,斯琴毕力格,等. 直流辉光放电质谱法测定多晶硅中关键杂质元素的相对灵敏度因子[J]. 分析化学,2012,40(1):66-71.LIU Jie, QIAN Rong, SIQIN Bilige, et al. Determination of relative sensitivity factors of impurities in poly-silicon by direct current glow discharge mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 40(1): 66-71(in Chinese).
    [12]
    BECKURTS K H, WIRTZ K. Neutron physics[M]. Berlin: Springer-verlage, 1964: 376.
    [13]
    BOLEWSKI A, Jr, CIECHANOWSKI M, DYDEJCZYK A, et al. A practical method for measuring the boron equivalent of graphite impurity[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 237(3-4): 602-612.
    [14]
    王宏伟,陈金根,蔡翔舟,等. 电子直线加速器驱动的光中子源装置的研制[J]. 核技术,2014,37(10):100522.WANG Hongwei, CHEN Jingen, CAI Xiangzhou, et al. Development of photoneutron facility driven by electron LINAC[J]. Nuclear Techniques, 2014, 37(10): 100522(in Chinese).
    [15]
    WANG X H, LIU L X, HU J F, et al. Study on background shielding for a compact photoneutron source[J]. Progress in Nuclear Energy, 2019, 115: 74-79.
    [16]
    朱亮,刘龙祥,王宏伟,等. 光中子源上吸收片功能研究[J]. 原子核物理评论,2016,33(3):308-314.ZHU Liang, LIU Longxiang, WANG Hongwei, et al. A study of the filter functions used in the photoneutron source[J]. Nuclear Physics Review, 2016, 33(3): 308-314(in Chinese).
    [17]
    王小鹤,胡继峰,陈金根,等. 钍铀燃料循环专用核数据库CENDL-TMSR-V1的基准检验[J]. 原子能科学技术,2019,53(8):1466-1473.WANG Xiaohe, HU Jifeng, CHEN Jingen, et al. Benchmark test of CENDL-TMSR-v1 nuclear data library for thorium-uranium fuel cycle[J]. Atomic Energy Science and Technology, 2019, 53(8): 1466-1473(in Chinese).
    [18]
    LIU L X, WANG H W, MA Y G, et al. Neutron time-of-flight spectroscopy measurement using a waveform digitizer[J]. Chinese Physics C, 2017, 40(5): 70-74.
    [19]
    LIU L X, WANG H W, MA Y G, et al. Measurements of the total cross section of natBe with thermal neutrons from a photo-neutron source[J]. Nuclear Instruments and Methods in Physics Research B, 2017, 401: 158-163.
    [20]
    复旦大学,清华大学,北京大学. 原子核物理实验方法[M]. 北京:原子能出版社,1996:16-18.

Catalog

    Article views (179) PDF downloads (950) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return