Citation: | GAO Pengcheng, ZHANG Bin, SHAN Jianqiang. Development of Fuel Rod Rupture Thermal-mechanical Module and Application in Severe Accident Analysis Code[J]. Atomic Energy Science and Technology, 2022, 56(7): 1300-1307. DOI: 10.7538/yzk.2021.youxian.0460 |
[1] |
PLANT L N, UNITS I. Acceptance criteria for emergency core cooling systems for lightwater nuclear power[R]. US: Nuclear Regulatory Commission, 2011.
|
[2] |
WILLIAMS E, MARTIN R, GANDRILLE P, et al. Recent revisions to MAAP4 for U.S. EPR severe accident applications[C]∥2008 International Congress on Advances in Nuclear Power Plants. [S. l.]: [s. n.], 2008.
|
[3] |
GAUNTT R O, CASH J E, COLE R K, et al. MELCOR computer code manuals 12, Version 1.8.6[R]. US: Sandia National Laboratories, 2005.
|
[4] |
CHATELARD P, REINKE N, ARNDT S, et al. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives[J]. Nuclear Engineering and Design, 2014, 272: 119-135.
|
[5] |
GAO P, ZHANG B, LI J, et al. Development of mechanistic cladding rupture model for integrated severe accident code ISAA, Part Ⅰ: Module verification and application in CAP1400[J]. Annals of Nuclear Energy, 2021, 158(23): 108305.
|
[6] |
LUSCHER W G, GEELHOOD K J. Material property correlations: Comparisons between FRAPCON3.4, FRAPTRAN 1.4, and MATPRO[R]. US: Office of Scientific & Technical Information, 2015.
|
[7] |
DAURIA F, SALAH A B, GALASSI G M, et al. CRISSUES: WP2 neutronics/thermalhydraulics coupling in LWR technology: State-of-the-art report (REAC-SOAR)[R]. [S. l.]: Nuclear Energy Agency Organisation for Economic Co-operation and Development, 2004.
|
[8] |
郑明光,严锦泉. 大型先进非能动压水堆CAP1400:上册[M]. 上海:上海交通大学出版社,2018.
|
[9] |
SEHGAL B R. Nuclear safety in light water reactors[R]. [S. l.]: SARNET (Severe Accident Network) in the Framework Programmes of Research of the European Commission, 2012.
|
[10] |
GAO P, ZHANG B, LI J, et al. Development of mechanistic cladding rupture model for severe accident analysis and application in PHEBUS FPT3 experiment[J/OL]. Nuclear Engineering and Technology, 2021, https:∥doi.org/10.1016/j.net.2021.07.029.
|
[11] |
ROSS K, PHILLIPS J. MELCOR computer code manuals, Vol. 3: MELCOR assessment problems, Version 2.1.7347, SAND 2015-6693R[R]. US: Sandia National Laboratories, 2015.
|
[12] |
ZHENG M, YAN J, SHENTU J, et al. The general design and technology innovations of CAP1400[J]. Engineering, 2016, 2(1): 97-102.
|
[13] |
GAO P C, ZHANG B. Development of mechanistic cladding rupture model for severe accident analysis and application[C]∥National Energy Nuclear Power Software Key Laboratory 2020 Academic Annual Meeting. [S. l.]: [s. n.], 2020: 499-506.
|
[14] |
KIM H, LEE S, KIM J, et al. Development of MERCURY for simulation of multidimensional fuel behavior for LOCA condition[J]. Nuclear Engineering and Design, 2020, 369: 110853.
|
[15] |
JNOS G, GNES G, KATALIN K. The fuel behaviour code FUROM and its high burnup simulation capabilities[J]. Nuclear Engineering and Design, 2018, 327: 274-285.
|
[1] | ZHENG Mingguang, TANG Bo, YAN Jinquan, SHI Guobao, CHANG Huajian, CAO Kemei, KUANG Bo, YU Fan, WANG Guodong, ZHANG Kun. Nuclear Safety Technology Development for CAP1400[J]. Atomic Energy Science and Technology, 2024, 58(S2): 355-361. DOI: 10.7538/yzk.2024.youxian.0477 |
[2] | CAO Liangzhi, DENG Li, YANG Bo, LIU Zhouyu, LIU Peng, TANG Chuntao, SHI Dunfu, CHEN Ronghua, TIAN Wenxi, PENG Lianghui, WAN Chenghui, ZHANG Minwan, BI Guangwen, FEI Jingran, XU Xiaobei, LI Fan. Development and Application of CAP1400 Numerical Reactor System[J]. Atomic Energy Science and Technology, 2022, 56(2): 213-225. DOI: 10.7538/yzk.2021.youxian.0948 |
[3] | SHI Guobao, XU Caihong, YAN Jinquan, FAN Pu, ZHU Sheng. Analysis on Key Phenomena of CAP1400 Passive Core Cooling Integral Testing[J]. Atomic Energy Science and Technology, 2021, 55(10): 1806-1813. DOI: 10.7538/yzk.2020.youxian.0709 |
[4] | DING Zonghua, ZHANG Ming, LIN Shaoxuan. Experiment Study on CAP1400 Core Inlet Flow Distribution[J]. Atomic Energy Science and Technology, 2018, 52(9): 1635-1640. DOI: 10.7538/yzk.2018.youxian.0254 |
[5] | LIU Hongda, LU Daogang, LIU Yu. Experimental Study on Fluid-structure Interaction under Earthquake Condition of CAP1400 Double Spent Fuel Storage Rack[J]. Atomic Energy Science and Technology, 2018, 52(6): 1034-1039. DOI: 10.7538/yzk.2018.youxian.0004 |
[6] | JIANG Bin, ZHANG Peng, ZHANG Lei, HU Xiao, HE Dandan, CHEN Lian, CHANG Huajian, CHEN Peipei. Experimental Investigation of ADS-4 Entrainment with Air and Boric Acid[J]. Atomic Energy Science and Technology, 2018, 52(5): 862-867. DOI: 10.7538/yzk.2018.52.05.0862 |
[7] | YING Bing-bin, LIN Shao-xuan, SONG Yin-xi, YOU Yan. Research of Steam-water Separation Equipment of Steam Generator for CAP1400[J]. Atomic Energy Science and Technology, 2016, 50(12): 2194-2199. DOI: 10.7538/yzk.2016.50.12.2194 |
[8] | FANG Ying, ZHANG Wei, SUI Xi, ZHANG Ming, WANG Sheng, LIN Shao-xuan, ZHUO Wen-bin, LI Peng-zhou. Experimental Research on Bypass Flow Characteristic between Core Barrel and Core Shroud of CAP1400 Reactor[J]. Atomic Energy Science and Technology, 2016, 50(2): 273-276. DOI: 10.7538/yzk.2016.50.02.0273 |
[9] | FU Qiang, CAO Liang, ZHU Rong-sheng, XI Yi, WANG Xiu-li. Study on Matching of Guide Vane and Impeller in CAP1400 Nuclear Reactor Coolant Pump[J]. Atomic Energy Science and Technology, 2016, 50(1): 143-150. DOI: 10.7538/yzk.2016.50.01.0143 |
[10] | WU Hao, LI Wei-hua. Simulation on Steam Supply System of Comprehensive Environmental Reliability Test for CAP1400 Passive Containment System[J]. Atomic Energy Science and Technology, 2015, 49(zengkan1): 209-213. DOI: 10.7538/yzk.2015.49.S0.0209 |