Citation: | WANG Jian, ZHANG Li, JIAO Ming, LIU Houli, FEI Xiaoming. Experimental Study of Effect of Oxidation and Additive in Working Fluid on CHF of SA508 Steel[J]. Atomic Energy Science and Technology, 2022, 56(8): 1662-1670. DOI: 10.7538/yzk.2021.youxian.0607 |
[1] |
THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel cool ability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48.
|
[2] |
MA W, YUAN Y, SEHGAL B R. In-vessel melt retention of pressurized water reactors: Historical review and future research needs[J]. Engineering, 2016, 2(1): 103-111.
|
[3] |
陈红宇,杜军毅,邓林涛,等. 核反应堆压力容器锻件用SA508系列钢的比较和分析[J]. 大型铸锻件,2008(1):1-3.
CHEN Hongyu, DU Junyi, DENG Lintao, et al. The comparison and analysis of SA508 series steel used for nuclear reactor pressure vessel forgings[J]. Heavy Casting and Forging, 2008(1): 1-3(in Chinese). |
[4] |
PARK H M, YONG H J, SUN H. Effect of heater material and coolant additives on CHF for a downward facing curved surface[J]. Nuclear Engineering and Design, 2014, 278: 344-351.
|
[5] |
MATHIAS T, REZA A, JONATHAN P, et al. A margin missed: The effect of surface oxidation on CHF enhancement in IVR accident scenarios[J]. Nuclear Engineering and Design, 2018, 335: 140-150.
|
[6] |
WANG K, ERKAN N, GONG H, et al. Effects of carbon steel surface oxidation on critical heat flux in downward-face pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 136: 470-485.
|
[7] |
WANG K, ERKAN N, OKAMOTO K. A study on the effect of oxidation on critical heat flux in flow boiling with downward-faced carbon steel[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118966.
|
[8] |
WANG K, ERKAN N, OKAMOTO K. Oxidation effect of copper on the downward-facing flow boiling CHF under atmospheric condition[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119866.
|
[9] |
SON H H, JEONG U, SEO G H, et al. Effect of oxide layer thickness on the pool boiling critical heat flux of pre-oxidized RPV material[C]∥16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. US: American Nuclear Society, 2015: 139-152.
|
[10] |
SON H H, JEONG U, SEO G H, et al. Oxidation effect on the pool boiling critical heat flux of the carbon steel substrates[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1008-1019.
|
[11] |
KAM D H, CHOI Y J, JEONG Y H. Critical heat flux on downward-facing carbon steel flat plates under atmospheric condition[J]. Experimental Thermal and Fluid Science, 2018, 90: 22-27.
|
[12] |
田道贵,胡啸,陈炼,等. 池沸腾下朝向SA508钢表面临界热流密度特性试验研究[J]. 原子能科学技术,2020,54(12):2362-2368.
TIAN Daogui, HU Xiao, CHEN Lian, et al. Experimental research on critical heat flux for downward-facing pool boiling with SA508 steel plate[J]. Atomic Energy Science and Technology, 2020, 54(12): 2362-2368(in Chinese). |
[13] |
LEE J, CHANG S H. An experimental study on CHF in pool boiling system with SA508 test heater under atmospheric pressure[J]. Nuclear Engineering and Design, 2012, 250: 720-724.
|
[14] |
KIM T I, PARK H M, CHANG S H. CHF experiments using a 2-D curved test section with additives for IVR-ERVC strategy[J]. Nuclear Engineering and Design, 2012, 243: 272-278.
|
[15] |
CHANG H, HU T, LU W, et al. Experimental study on CHF using a full scale 2-D curved test section with additives and SA508 heater for IVR-ERVC strategy[J]. Experimental Thermal and Fluid Science, 2017, 84: 1-9.
|
[16] |
PARK H M, JEONG Y H, HEO S. Effect of heater material and coolant additives on CHF for a downward facing curved surface[J]. Nuclear Engineering and Design, 2014, 278: 344-351.
|
[17] |
KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75(1): 3-8.
|
[18] |
MEI Y, SHAO Y, GONG S, et al. Effects of surface orientation and heater material on heat transfer coefficient and critical heat flux of nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2018, 121: 632-640.
|
[19] |
ZUBER N. Hydrodynamic aspects of boiling heat transfer[D]. US: University of California, 1959.
|
[20] |
KIM J, JUN S, LAKSNARAIN R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002.
|
[21] |
GUAN C, BON B, KLAUSNER J, et al. Comparison of CHF enhancement on microstructured surfaces with a predictive model[J]. Heat Transfer Engineering, 2014, 35(5): 452-460.
|
[22] |
BAILEY W, YOUNG E, BEDUZ C, et al. Pool boiling study on candidature of pentane, methanol and water for near room temperature cooling[C]∥Conference on Thermal & Thermomechanical Phenomena in Electronics Systems. US: IEEE, 2006: 599-603.
|
[23] |
黄素逸. 反应堆热工水力分析[M]. 北京:机械工业出版社,2014.
|
[24] |
TAKEDA M, ONISHI T, NAKAKUBO S, et al. Physical properties of iron-oxide scales on Si-containing steels at high temperature[J]. Materials Transactions, 2009, 50(9): 2242-2246.
|
[25] |
戚元久. 磷酸三钠缓蚀性能影响因素研究[J]. 无机盐工业,2019,51(8):52-55.
QI Yuanjiu. Study on influencing factors on corrosion inhibition performance of trisodium phosphate[J]. Inorganic Chemicals Industry, 2019, 51(8): 52-55(in Chinese). |
[26] |
DONG H K, CHOI Y J, YONG H J. Boric acid and boiling time effects on critical heat flux for corrosive and non-corrosive materials[J]. Annals of Nuclear Energy, 2020, 136: 106999.
|
[27] |
XIE S, BENI M S, CAI J, et al. Review of critical-heat-flux enhancement methods[J]. International Journal of Heat and Mass Transfer, 2018, 122: 275-289.
|
[28] |
YONG H J, CHANG W J, CHANG S H. Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids[J]. International Journal of Heat and Mass Transfer, 2008, 51(11-12): 3025-3031.
|
[29] |
杨胜,胡腾,陆维,等. 针对IVR-ERVC策略的朝下曲面化学水沸腾CHF特性试验[J]. 核动力工程,2016,37(6):23-27.
YANG Sheng, HU Teng, LU Wei, et al. Experimental study on critical heat flux of chemical water boiling on a downward facing curved surface for IVR-ERVC strategy[J]. Nuclear Power Engineering, 2016, 37(6): 23-27(in Chinese). |