Citation: | HE Yihai, WANG Gang, KUANG Bo, LUO Yuejian, WU Xiaoli. Experimental Investigation on CHF along Elliptic-shaped Lower Head Wall and Influencing Factor under IVR-ERVC Condition[J]. Atomic Energy Science and Technology, 2022, 56(11): 2465-2473. DOI: 10.7538/yzk.2021.youxian.0972 |
[1] |
孙汉虹. 第三代核电技术AP1000[M]. 北京:中国电力出版社,2016:13-14.
|
[2] |
OH S J, KIM H T. Effectiveness of external reactor vessel cooling (ERVC) strategy for APR1400 and issues of phenomenological uncertainties[C]∥Workshop Proceedings on Evaluation of Uncertainties in Relation to Severe Accidents and Level2 Probabilistic Safety Analysis. France: [s. n.], 2005.
|
[3] |
邢继. 华龙一号能动与非能动相结合的先进压水堆核电厂[M]. 北京:中国原子能出版社,2016:170-174.
|
[4] |
严锦泉,史国宝,林诚格,等. CAP1400安全设计与实际消除大量放射性释放[J]. 核安全,2016,15(1):76-83.
YAN Jinquan, SHI Guobao, LIN Chengge, et al. CAP1400 design for the requirements of “practically eliminated”[J]. Nuclear Safety, 2016, 15(1): 76-83(in Chinese). |
[5] |
金越,鲍晗,刘晓晶,等. 大功率先进压水堆IVR有效性评价分析[J]. 核动力工程,2015,36(3):135-141.
JIN Yue, BAO Han, LIU Xiaojing, et al. Assessment of invessel retention for advanced large size PWRs[J]. Nuclear Power Engineering, 2015, 36(3): 135-141(in Chinese). |
[6] |
THEOFANOUS T G, SYRI S. The coolability limits of a reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 1997, 169(1): 59-76.
|
[7] |
张震,熊万玉,王雄,等. 严重事故条件下压力容器下封头外表面临界热流密度实验研究[J]. 核动力工程,2016,37(5):4-9.
ZHANG Zhen, XIONG Wanyu, WANG Xiong, et al. Experimental research of critical heat flux on pressure vessel lower head external surface under severe accident[J]. Nuclear Power Engineering, 2016, 37(5): 4-9(in Chinese). |
[8] |
WANG F, KUANG B, LIU P F, et al. An experimental study on natural circulation flow characteristics under passive IVR-ERVC conditions[J]. Annals of Nuclear Energy, 2019, 131: 401-411.
|
[9] |
赵男,匡波,刘鹏飞,等. 流道因素对熔融物堆内滞留压力容器下封头外的冷却能力影响试验研究[J]. 电力与能源,2017,38(3):310-315.
ZHAO Nan, KUANG Bo, LIU Pengfei, et al. Experimental research on the influence of flow channel factors on IVR-ERVC capability[J]. Power & Energy, 2017, 38(3): 310-315(in Chinese). |
[10] |
唐超力,匡波,刘鹏飞,等. 非能动IVRERVC试验装置的流动特性初步研究[J]. 核技术,2014,37(12):59-66.
TANG Chaoli, KUANG Bo, LIU Pengfei, et al. Preliminary analysis of channel flow characteristics in the passive IVR-ERVC experimental facility[J]. Nuclear Techniques, 2014, 37(12): 59-66(in Chinese). |
[11] |
KYMLINEN O, TUOMISTO H, THEOFANOUS T G. In-vessel retention of corium at the Loviisa plant[J]. Nuclear Engineering and Design, 1997, 169(1-3): 109-130.
|
[12] |
ISHIII M, KATAOKA I. Scaling criteria for LWR’s under singlephase and twophase natural circulation[R]. USA: Argonne National Lab., 1982.
|
[13] |
THEOFANOUS T G, SYRI S, SALMASSI T, et al. Critical heat flux through curved, downward facing, thick walls[J]. Nuclear Engineering and Design, 1994, 151(1): 247-258.
|
[14] |
DINH T N, TU J P, SALMASSI T, et al. Limits of coolability in the AP1000-related ULPU-2400 configuration Ⅴ facility, CRSS-03/06[R]. Santa Barbara: Center for Risk Studies and Safety, University of California, 2003.
|
[15] |
KUANG B, LIU P F, WANG F, et al. Influences of some engineered factors on IVR-ERVC limits[J]. Nuclear Engineering and Design, 2019, 347: 20-30.
|