Citation: | LU Xiao, LIAN Zhanjiang, GAO Zaochun. GPU Accelerated Variation after Projection Calculation[J]. Atomic Energy Science and Technology, 2024, 58(2): 272-278. DOI: 10.7538/yzk.2023.youxian.0311 |
[1] |
CHEN J Q. Nucleon-pair shell model: Formalism and special cases[J]. Nuclear Physics A, 1997, 626(3): 686-714.
|
[2] |
HOROI M, BROWN B A, ZELEVINSKY V. Truncation method for shell model calculations[J]. Physical Review C, 1994, 50(5): R2274.
|
[3] |
KOONIN S E, DEAN D J, LANGANKE K. Shell model monte carlo methods[J]. Physics Reports, 1997, 278(1): 1-77.
|
[4] |
OTSUKA T, HONMA M, MIZUSAKI T, et al. Monte Carlo shell model for atomic nuclei[J]. Progress in Particle and Nuclear Physics, 2001, 47(1): 319-400.
|
[5] |
MIZUSAKI T, SHIMIZU N. New variational Monte Carlo method with energy variance extrapolation for large-scale shell-model calculations[J]. Physical Review C, 2012, 85(2): 021301.
|
[6] |
SHIMIZU N, TSUNODA Y, UTSUNO Y, et al. Variational approach with the superposition of the symmetry-restored quasiparticle vacua for nuclear shell-model calculations[J]. Physical Review C, 2021, 103(1): 014312.
|
[7] |
SCHMID K. On the use of general symmetry-projected hartree-fock-bogoliubov configurations in variational approaches to the nuclear many-body problem[J]. Progress in Particle and Nuclear Physics, 2004, 52(2): 565-633.
|
[8] |
GAO Z C, HOROI M, CHEN Y S. Variation after projection with a triaxially deformed nuclear mean field[J]. Physical Review C, 2015, 92(6): 064310.
|
[9] |
TU Y, HE Y, GAO Z C, et al. Implementation of the variation-after-projection approach in calculations with a time-odd hartree-fock mean field[J]. Physical Review C, 2017, 95(6): 64307.
|
[10] |
高早春,陈永寿. 投影后变分新方法对原子核低激发态的描述[J]. 原子核物理评论,2018,35(4):429-438. GAO Zaochun, CHEN Yongshou. Description of low excited states of atomic nuclei by a new post-projection variational method[J]. Nuclear Physical Review, 2018, 35(4): 429-438(in Chinese).
|
[11] |
WANG J Q, GAO Z C, MA Y J, et al. New algorithm in the variation after projection calculations for non-yrast nuclear states[J]. Physical Review C, 2018, 98(2): 021301.
|
[12] |
LIAN Z J, LU X, GAO Z C. Energy-variance extrapolation for high-spin states with fully optimized variation after projection wave functions[J]. Physical Review C, 2022, 106(4): 044308.
|
[13] |
GAO Z C. Variation after projection calculations for high-spin states[J]. Physics Letters B, 2022, 824: 136795.
|
[14] |
RINGS P, SCHUCK P. The nuclear many body problem[M]. New York: Springer-Verlag, 1980.
|
[15] |
NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York: Springer, 1999.
|
[16] |
BROWN B A, RICHTER W. New "usd" hamiltonians for the sd shell[J]. Physical Review C, 2006, 74(3): 034315.
|
[17] |
ALLMOND J M, STUCHBERY A E, BROWN B A, et al. 2π1ν states populated in 135Te from 9Be induced reactions with a 132Sn beam[J]. Physical Review C, 2014, 90(1): 014322.
|
[18] |
HAYES A B, CLINE D, WU C Y, et al. Breakdown of K selection in 178Hf[J]. Physical Review Letters, 2006, 96(4): 042505.
|